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ABSTRACT 
 

Synthesis and Characterization of Complex Molecular Assemblies on Surfaces 
 

Nitesh Madaan 
Department of Chemistry and Biochemistry, BYU 

Doctor of Philosophy 
 

The research presented in this dissertation is focused on the construction of complex 
molecular structures on planar gold and silicon dioxide surfaces using a variety of surface 
modification techniques, along with thorough surface characterization at each modification step. 
The dissertation is structured into six separate chapters. In Chapter 1, an introduction to the 
importance and implications of molecular level surface modification, commonly employed surface 
modification methods, and available surface characterization techniques is presented. Chapter 2 
shows applications of novel methodologies for the functionalization of gold surfaces using alkane 
dithiol self-assembled monolayers and thiol-ene click chemistry. The resulting functionalized gold 
substrates demonstrate higher chemical stability than alkanethiol self-assembled monolayers alone 
and allow spatially controlled functionalization of gold surfaces with light. In Chapter 3, work on 
tunable hydrophobic surfaces is presented. These surfaces are prepared using a combination of 
organosilane chemistry, layer-by-layer polyelectrolyte deposition, and thiol-ene chemistry. These 
hydrophobic surfaces demonstrate high mechanical and chemical stability, even at low pH (1.68). 
The pinning of water droplets could be tuned on them by the extent of their thermal treatment. 
Comprehensive surface characterization using X-ray photoelectron spectroscopy (XPS), time-of-
flight secondary ion mass spectrometry (ToF-SIMS), spectroscopic ellipsometry, atomic force 
microscopy, and water contact angles was carried out on the molecular assemblies prepared on 
gold and silicon dioxide surfaces. Chapters 4 and 5 are focused on the application, data 
interpretation, and enhancement in sensitivity of different surface characterization methods. In 
Chapter 4, XPS, ToF-SIMS, and principal components analysis are used to probe a real world 
corrosion-type problem. This systemic study showed the destruction of a protective coating 
composed of a nitrilotris(methylene)triphosphonic acid by a low-intensity fluorine plasma. In 
Chapter 5, enhancement in ToF-SIMS signals is shown via bismuth metal deposition. These 
surfaces are also probed by spectroscopic ellipsometry using the interference enhancement 
method. Finally, Chapter 6 concludes this dissertation by describing possible future work.  
 
 
 
 
 
Keywords: Self-assembled monolayer (SAM), X-ray photoelectron spectroscopy (XPS), time-of-
flight secondary ion mass spectrometry (ToF-SIMS), ellipsometry, water contact angle, thiol-ene 
click chemistry, layer-by-layer (LBL) polyelectrolyte deposition, silane chemistry, gold, thiol, 
hydrophobic, metal assisted SIMS (meta-SIMS), interference enhancement method.  
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Chapter 1: Introduction to Surface Modification 

and Characterization 

 

1.1. Introduction 

Nature is flooded with complex molecular structures and assemblies at different length scales 

that are consistently carrying out complicated tasks in an autonomous manner. These provide 

tremendous motivation and inspiration to the scientific enterprise. However, reproducing many of 

these phenomena in the laboratory is still a daunting task, even for skilled scientists. DNA and 

proteins are especially inspirational. Both types of biomacromolecules contain significant amounts 

of the abundant, low atomic mass elements carbon (C), oxygen (O), and nitrogen (N). DNA 

consists of long chains of nucleic acid that can fold following specific H-bonding interactions to 

code genetic information and direct the production of specific proteins. Proteins are arguably more 

complex and even more interesting. They are polymeric chains of roughly twenty amino acids that 

fold into complex three-dimensional structures that ultimately carry out specific tasks – many 

proteins are essentially molecular scale machines with a vast array of functions. For example, as 

enzymes they may catalyze chemical reactions that would otherwise be extremely difficult to carry 

out in the rather mild, aqueous environments of cells. It is absolutely fascinating that Nature has 

the ability to drive so much complicated chemistry using only sunlight and a relatively small 

handful of elements without any continued intelligent intervention. Everything appears to self-

assemble and self-improvise to continue survival. We, humans, are one of the best products of 

Nature. Compared to the capabilities of Nature, chemistry as we know it is still in its infancy.  
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All of this is not to imply that we, humans, have not reached significant milestones. We have 

discovered electricity and magnetism, quantum mechanics, and have progressed remarkably in 

making semiconductor devices. We manufacture complex devices like cellphones, computers, air 

conditioners, cars, airplanes, etc., that we use daily. We have engineered sophisticated scientific 

instruments that include scanning electron microscopes, mass spectrometers, X-ray spectrometers, 

etc. These devices are quite unique in nature. Although our innovations might be relatively small 

compared to what Nature has achieved in billions of years of evolution, our advances definitely 

bear some significance and novelty. We have progressed remarkably in the field of health sciences, 

where many diseases are entirely curable, and we are still working to find cures for scourges like 

cancer and AIDS. Computers have proved to be remarkable tools to speed our research in every 

area of science. The size of devices continues to shrink, thanks to great achievements in 

microfabrication that include photolithography, thin film deposition, etc. Of course the motivation 

behind making smaller devices is that, in general, they require less power, allow more functionality 

in the same space, are made from fewer raw materials, and are more economical. Indeed, to some 

degree we are already starting to work at molecular and atomic scales. For example, we have 

imaging techniques that enable us to see single atoms e.g. transmission electron microscopes. But, 

in terms of manipulating matter at the atomic level, we still have long way to go. That is, in spite 

of where we stand in the current era of miniaturization, we are merely entering the realm of 

molecular scale devices. Perhaps the main motivation behind the creation of devices at the 

molecular scale, in addition to what has been mentioned, is that they promise possibilities and 

solutions to problems that are beyond our imagination, as suggested and demonstrated by Nature 

itself.  
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Clearly a disadvantage of working in the molecular regime is that our top-down 

manufacturing approaches, like photolithography, become less and less applicable as we approach 

atomic/molecular length scales due to the diffraction limit of light. Nevertheless, our huge 

advantage now is that we can adopt or mimic many amazing phenomena directly from Nature, 

provided we can understand them, to self-assemble functional molecular devices for our use. For 

instance, we might be able to create a molecular device that can capture sunlight with substantially 

higher efficiency than is possible now, converting it into electricity, i.e., a man-made 

photosynthetic machine. Indeed, the sun illuminates the earth with more than enough photons to 

meet all our energy needs but we do not have technology to adequately capture this energy. Or, 

we could create enzymes to better convert cellulose into combustible fuel and other enzymes to 

convert emitted CO2 back into carbon and oxygen at rates comparable to fuel consumption. But 

before we can realize any or all of these possibilities that the molecular regime has to offer, we 

need to understand the principles that govern atomic length scales with the same level of 

understanding and precision as we know the laws of motion that allow us to send a rocket into 

space. In this context, surface science offers an important platform to prepare, interact, and 

physically and chemically understand complex molecular functional devices on surfaces. Some of 

the complex molecular devices that might be constructed and understood with the apparatus of 

surface science include biosensors, solar cells, nanoscale electronic circuits, catalysts, 

nanobatteries, and molecules for transporting electrons in molecules, etc. There are two equally 

important aspects of surface science: surface chemistry and surface characterization. In this 

dissertation I explore a series of surface chemistries and surface characterization tools to make and 

analyze complex molecular assemblies. I firmly believe that this work, along with that of many 

other scientists, will bring mankind closer to its goal of imitation and even improvement of Nature. 
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1.2. Surface Chemistry 

 Surface chemistry often deals with the attachment of chemical moieties to solid surfaces, 

where this is often achieved via various coupling chemistries. The solid surface or substrate that 

is typically used for this purpose can be planar or particulate. Essentially any solid material can be 

coated. These may include metals (e.g., Au, Ag, Cu, Pt), alloys, semiconductors (e.g., Si, Ge, 

GaAs), oxides (e.g., SiO2, indium tin oxide (ITO), CuO2), plastics, and polymers (e.g., 

polycarbonate, polyethylene, polymethylmethacrylate). Of the thousands of good examples of 

surface chemistry in the literature, here are two that show some practical applicability to 

photovoltaics and immunosensing. Yamada et al. modified ITO with porphyrin-fullerene dyads to 

create a molecular level photovoltaic device.1 Liu et al. demonstrated label free immunobiosensing 

with biotin on functionalized glassy carbon electrodes so that they could detect antibodies.2 The 

attachment of porphyrin – fullerene dyads or biotin to a surface transformed a molecular signal 

into an amperometric one that could be more easily interpreted.1-2 Such an integration of molecular 

scale devices with semiconductor technology/electronics demands in-depth knowledge of surface 

chemistry. Ultimately, this ability should give us precise control that will include precise 

positioning of adsorbates, a high degree of stability, reversibility (if it is required), and the desired 

functionality. The following is an overview of some well-known surface chemistry methods that 

can be employed to construct complex molecular structures on surfaces. 

 

1.2.1. Self-Assembled Monolayers 

Self-assembled monolayers (SAMs) can be defined as one molecule thick, continuous 

layers of a chemical species that spontaneously form on a surface when it is immersed in a solution 

of an adsorbate or comes in contact with its vapors. Sometimes additional treatments like thermal 
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curing or application of a voltage bias are required for these depositions. The most common 

precursors and surfaces in this category are organosilane monolayers on hydroxylated surfaces, 

thiol monolayers on gold, phosphonate monolayers on oxide surfaces, aryl diazonium salt derived 

layers, alkenes and alkynes on hydrogen-terminated silicon, and layer-by-layer electrostatic 

assemblies. The choice of self-assembly method depends significantly on the nature of the 

substrate.  

 

1.2.1.1.  Organosilane Chemistry 

In 1980, Sagiv et al. first demonstrated covalent attachment of chlorosilane and 

alkoxysilanes to an oxidized substrate.3 Since that time, this chemistry has found numerous 

practical and theoretical applications due to its broad applicability on many types of hydroxylated 

surfaces – silicon oxide, alumina, zinc oxide, iron oxide, polyvinyl alcohol, oxidized polyethylene, 

etc.4-7 Silane deposition generally gives quite dense layers, but reproducibility in monolayer 

formation can be a challenging task when dealing with trichloro- and trialkoxysilanes due to cross-

linking (polymerization) between silane molecules.8-9 Nevertheless, it has been widely employed 

e.g., to make reversed phase stationary phases in chromatography, for coating glass.10-11 The 

attachment of silane molecules to surfaces proceeds through the reaction of alkoxy- or halogen- 

groups on the silanes with surface hydroxyl groups.12 In some cases, prior activation of the surface 

to increase the number of reactive surface hydroxyl groups on it is necessary.13 In general all of 

the hydroxyl groups on a surface do not undergo silanization. The monolayer coverage may be 

obtained by lateral cross-linking of silane molecules to form long, polymeric chains or networks, 

and only 10 – 20 % of the concatenated/networked silanes need to form covalent linkages to the 

surface.7 A considerable amount of research has been done on organosilane monolayers, which 
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has included the study of optimum aqueous/non-aqueous deposition conditions, curing 

temperatures, and orientation of SAM molecules.14-16  

 

1.2.1.2.  Thiol Monolayers on Gold 

Organic molecules containing sulfur atoms in the form of thiol or sulfide moieties, e.g., 

alkanethiol, alkanedithiol, arenethiol, arenedithiol, dialkyldisulfides, and dialkylsulfides form self-

assembled monolayers (SAMs) on a variety of pure metallic surfaces that are free from any native 

metal oxide layer, which may include Au, Ag, Ni, Pt, Fe, Pd, Cu, etc.17-21 Thiol SAMs on Au 

gained special importance because of their ease of preparation, i.e., unlike most other metals Au 

does not form a stable oxide layer. In 1983, Nuzzo and Allara first demonstrated the affinity of 

thiol groups for gold vis-à-vis SAMs.22 The structure of a typical thiol molecule/adsorbate can be 

subdivided into three parts, (a) a thiol or sulfide head group that interacts with the Au substrate 

(~50 kcal/mol),23 (b) a hydrocarbon component (aromatic or aliphatic) that allows weak van der 

Waals interactions between adsorbates,23 and (c) a terminal functional group that is chosen to 

impart a desired surface property, e.g., hydrophilicity or hydrophobicity, or used to further attach 

other molecules, biomolecules, and polymers of interest to the Au substrate. The exact nature of 

the Au-S interaction is still debatable; it is believed that upon adsorption the thiol loses its hydrogen 

to form thiolate species that tether to gold.24 However, the chemisorption of intact thiols has also 

been reported.25-26 Investigations based on density functional theory revealed that while disulfides 

chemisorb preferentially by thiolate formation, both thiolates and intact thiols can co-exist on a 

gold surface, where the SAMs were prepared using alkanethiol solutions.27 In addition, plenty of 

controversial experimental and theoretical data have been reported in relation to a strong 

reconstruction of the gold surface during the formation of thiol SAMs.28 In practice, it is found 
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that monolayer coverage is achieved in the first few minutes of immersion of a gold substrate in a 

solution of thiolated molecules. The initial SAM is quite disordered and the thiols are primarily in 

a lying down phase. However, if the substrate is immersed for hours, van der Waals interactions 

among any hydrocarbon chains on the adsorbates drives the reorganization of the SAMs into a 

standing-up phase of densely packed, well organized monolayers.23, 29-30 The reorganization of 

SAMs from a lying down phase to standing up phase involves replacement of solvent molecules 

on the Au surface by thiols and the stretching up of hydrocarbon chains into a trans conformation. 

In this regard, terminal groups that might have significant affinity for the Au substrate, e.g., in 

dithiols, can hinder the development of crystalline SAMs or may require longer hydrocarbon 

chains to enhance the van der Waals interactions to achieve a standing up phase.31 

The orientation of thiol molecules in well-ordered SAMs is described in terms of three 

angles with respect to the substrate: (a) the tilt angle, i.e., the angle between the axis of the 

hydrocarbon chain of the thiol molecule and the surface normal, (b) the twist angle, i.e., the angle 

of rotation of the hydrocarbon chain with respect to its axis, and (c) the precession angle, i.e., the 

angle between the projection of the tilt plane, which contains the surface normal and the molecular 

axis of the thiol molecule, and the substrate plane.32-33 The typical value of the tilt angle is 30-

35°.25 The most stable lattice structures for thiol SAMs on Au (111) are √3 𝑋𝑋 √3 𝑅𝑅 30° and its C 

(4 X 2) superlattice.34-35 The determination of the precise location where sulfur binds to a gold 

surface is still a subject of investigation. According to the latest gold adatom model, the gold 

surface undergoes significant reorganization at its interface with a thiol SAM.36-37 In spite of our 

incomplete understanding of the Au-SAM interface, the well-known ability of thiol molecules to 

form dense crystalline SAMs on gold surface is extremely valuable as these surfaces can be 

consistently modified with high functional density using mild experimental conditions.38 However, 
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this system has its limitations. For example, the thiol groups in SAMs are prone to oxidation.39 

Once the thiol group oxidizes, the Au-S bond strength drops substantially, which may lead to 

detachment of the adsorbate.40-41 The packing density of SAMs, which depends greatly on the 

physical shape of the adsorbate, can contribute to their stability. In general, alkanethiols create 

more organized molecular assemblies than aromatic thiols – the alkanethiols pack quite well in a 

fully stretched, all-trans configuration. Nevertheless, in spite of their limitations, thiol SAMs serve 

as a valuable tool for numerous applications e.g., in biosensors for functionalizing gold electrodes 

with biomolecules in a consistent and facile manner, in microfabrication as resist layers using 

photooxidation and thiol-exchange reactions, for preventing aggregation of gold nano-

architectures, for functionalization of medical devices like gold stents.42-44 

 

1.2.1.3. Organophosphonic Acid SAMs 

Phosphonic acids possess strong affinity for hydroxylated metal oxide surfaces e.g., 

zirconia,45 titania,46 alumina,47-48 silica,49-50 indium tin oxide.51 Coatings of alkylphosphonic acids 

have been in use since the early 1970s as corrosion inhibitors of aluminum surfaces and as adhesion 

promotion layers.47-48 Solid state NMR and vibrational spectroscopy studies show that phosphonic 

acid can directly react with hydroxylated surfaces to form strong P-O-X linkages where X can be 

Al, Si, Zr, Ti, etc.52 Alkylphosphonic acids have advantages over silanes in that they are not prone 

to form multilayers by lateral cross-linking,52-53 do not react with water,54 and each phosphonate 

group can form two or three linkages with the substrate, which yields increased stability.55 Hanson 

et al. and Raman et al. demonstrated multiple (two and three) linkages of organophosphonates to 

silica and steel surfaces, respectively.55-56 Yee et al. functionalized iron oxide nanoparticles with 

alkylphosphonic acid SAMs and demonstrated higher thermal stability than alkylsulphonic acid 
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SAMs on iron oxide nanoparticles.57 Marcinko et al. compared the hydrolytic stability of 

alkylphosphonic SAMs to alkyltrichlorosilane on titania and zirconia surfaces. Alkylphosphonic 

acid SAMs demonstrated higher stability at varied pH conditions (from 1-10).58 In another study, 

amino acid modified phosphonate SAMs demonstrated greater stability at physiological pH in 

comparison to organosilane SAMs on Ti-6Al-4V alloys.59 In comparison to organosilane SAMs, 

organophosphonic acid SAMs are less studied, but they are gaining attention due to their ease of 

preparation, handling, and stability. 

 

1.2.2. Layer-by-Layer Deposition 

The layer-by-layer (LBL) deposition process is also a self-assembling method, but it is not 

restricted to monolayer formation. Rather it allows the creation of multilayer structures. In LBL 

assembly, alternating layers of polymers, nanoparticles, molecules, or biomolecules that possess 

affinity for each other are deposited. The interaction between successive layers can be covalent,60-

62 electrostatic, H-bonding,63-64 metal-ligand,65-66 and pi-pi67 in nature. The natural tendency of 

biological moieties to explicitly bind with their counterpart has also been exploited for creating 

LBL assemblies.68-69 The most prevalent among them are the LBL assemblies based on 

electrostatic interactions. In fact, the first LBL assembly ever prepared was based on electrostatic 

interactions only.70-71 Such assemblies are prepared by immersing substrates in solutions of 

cationic and anionic polyelectrolytes in an alternating fashion. For instance, a silicon wafer with a 

native SiO2 layer is inherently negatively charged due to its silanol groups. When it is immersed 

in a solution of a cationic polyelectrolyte (e.g., polyallylamine hydrochloride, 

poly(diallyldimethylammonium chloride, polyethyleneimine), the cationic polyelectrolyte adheres 

to the substrate through electrostatic interactions. The interesting feature of this system is that once 
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the surface is covered with a cationic species, no additional material of the same charge will adsorb 

due to electrostatic repulsion. For example, if a substrate is covered by a polycation, the top surface 

will possess a positive charge that will prevent further adsorption of cationic species due to 

repulsion of like charges. This property of charge reversal incorporates a self-limiting feature to 

LBL depositions.72 Now, once a surface has a positive charge, it can be immersed in a solution of 

an anionic polyelectrolyte (e.g., polyacrylic acid, polystyrene sulfonate, polyvinyl sulfonate) to 

deposit another layer in a similar self-limiting manner.72-75 The electrostatic LBL deposition 

process has been successfully applied for applications that include light emitting diodes and non-

linear optical optics, with materials that include biomaterials (e.g., DNA, proteins, sugars), 

nanoparticles, and even viruses.63, 76-86 A significant amount of research has been performed to 

understand the LBL process, and it has been found that deposition conditions greatly influence the 

quality of final assemblies. For an instance, slight variations in the pH of the polyelectrolyte 

solution, rinsing and drying between each deposition step, the chemical nature and charge density 

of interacting chains, the presence of salt, and the temperature during the deposition can lead to 

remarkable variations in film roughnesses, porosities, layer thickness, and stability.87-90 

Thermodynamic studies have shown that the process of polyelectrolyte association is entropy 

driven and accordingly depends on the release of water of hydration and counterions.91-92 The 

preparation of LBL assemblies is very simple because they only require simple, inexpensive 

equipment like beakers and tweezers. In addition, this process can be easily automated and coupled 

with spin coating and spray technologies to reduce the preparation time without compromising 

film quality.93-98 The LBL process generally yields conformal layers, and due to its self-limiting 

nature the layer growth can be controlled at the monolayer level. The ease of preparation, 

molecular level control, and diversity of molecular materials that can be incorporated into these 
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multilayer structures render huge potential to LBL assemblies for numerous applications e.g., 

electro- and photo-chromic devices,99 photovoltaics,100 fuel cells,101 field effect transistors,102 

photoluminescence,103 superhydrophobic, superhydrophillic surfaces.104-105 

 

1.2.3. Thiol-Ene Click Chemistry 

Thiol-ene chemistry involves the hydrothiolation of carbon-carbon double bond (C=C). The 

thiol-ene reaction has been well known for over a century for preparing polymeric networks.106-107 

The application of the thiol-ene reaction was generally abandoned in the early 1970s due to a 

yellow discoloration on the surface of materials where thiol-ene polymer coatings had been 

employed for protection against wear. Interest in thiol-ene chemistry was renewed in late 1990s 

and continues to grow today as it has been recently realized that it possesses various attributes of 

a ‘click’ chemistry. A ‘click’ chemistry is one that can be carried out with high quantitative yields 

and with minimal undesirable byproducts under mild experimental conditions.108 Depending on 

the experimental conditions, a thiol-ene reaction can proceed either as (1) a radical mediated chain 

reaction path,109 or (2) a base catalyzed nucleophilic addition of an activated ‘ene’ functionality.110-

111 In the radical mediated mechanism, the S-H bond on a thiol functionality undergoes homolytic 

cleavage to generate thiyl radicals (R-S). The thiyl radical initiates the thiol-ene reaction by 

adding on to C=C in an anti-Markovnikov fashion resulting in a carbon-centered radical. At this 

point, the reaction propagates in a chain reaction as the carbon-centered radical fetches a hydrogen 

atom from a new thiol molecule to generate another thiyl radical that can undergo the same fate. 

The termination of this thiol-ene reaction occurs by the coupling of two radical moieties.  

In the case of the base catalyzed mechanism, a weak base, e.g., triethylamine (NEt3), 

deprotonates a thiol group to form a thiolate species that can attack an activated C=C moiety. The 
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activation of the C=C group can be achieved by decreasing its electron density, e.g., by attaching 

it to an electron withdrawing (e.g., an ester, amide, cyano) group.112 The radical mediated thiol-

ene reaction offers more flexibility than the base catalyzed reaction as it does not require activation 

of the ‘ene’ functionality. The generation of the thiyl radical can be achieved by homolysis of the 

S-H bond by application of heat or UV light, with or without a thermal or photo initiator. A 

considerable amount of research has gone into understanding the effects of the molecular structures 

of thiols and alkenes,113-114 the presence or absence of a variety of initiators, and the presence of 

oxygen on the kinetics of the thiol-ene reaction. In general, a terminal ‘ene’ was found to be more 

reactive than its substituted counterparts.113 It was observed that the reactivity of the ‘ene’ reduces 

with decreasing electron density on the C=C group with the exception of norbornene, which shows 

high reactivity due to the relief of ring strain upon reaction.113, 115 Methacrylate, styrene, and 

conjugated dienes are also exceptions in that they show slow thiol-ene kinetics due to higher 

stability of their carbon-centered radicals, which abstract H from thiol molecules in a less 

aggressive manner.115 The thiol-ene reaction is also reversible in nature leading to isomerization 

of ‘enes’ from cis to trans, which can affect the net yield of thiol-ene reactions. With regards to 

the relationship between the molecular structure and reactivity of thiols, alkyl thiols are less 

reactive than thio propionate esters or thio glycolate esters. A variety of commercial molecules are 

available that possess multiple ‘ene’ or thiol functionalities to create polymeric networks with 

desired properties. It has also been shown that the thiol-ene reaction can be achieved without 

initiators at comparatively lower reaction rates.116 An interesting and useful feature of thiol-ene 

chemistry is that it can be effectively carried out without being inhibited by oxygen in the reaction 

solvent.117 The polymer networks prepared through thiol-ene chemistry possess excellent 

oxidative and thermal stability because of their thio-ether linkages. 
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1.2.4. Miscellaneous Chemistries 

In addition to the above-mentioned self-assembled systems, other useful chemistries exist 

that have found application in surface science. For instance, the functionalization of hydrogen-

terminated silicon with alkenes and alkynes, first reported by Linford et al.,118 by application of 

radicals, heat, or UV light to create surface radicals that attack the double/triple bond of an 

alkene/alkyne.118-120 This surface chemistry gained interest because of the robustness of the C-Si 

bond and also because it was on silicon, a substrate that is central to modern technology. Another 

system that has gained a great deal of attention is aryl SAMs derived from aryl diazonium salts.121 

The aryl diazonium salt can be electrochemically reduced to form molecular nitrogen and an aryl 

radical that covalently attaches itself to substrate atoms. This dissociation of diazonium salts can 

be carried out in aqueous or non-aqueous solvents with or without an applied bias. Compared to 

thiol SAMs on Au, aryl diazonium salt derived SAMs are extremely robust and can be prepared 

on a wide variety of substrates – various metals122 (e.g., Au, Pt, Zn, Pt, Pd, Ni, Cu, Co), carbon 

nanotubes, other allotropes of carbon,123-124 and ITO125. In general, the deposition conditions must 

be optimized vis-à-vis salt concentration, applied bias, and reaction time to avoid formation of 

multilayer polyphenylene structure. Aryl moieties can be protected/designed to limit multilayer 

formation. In general, –COOH and –NH2 terminated aryl monolayers are most often prepared as 

they can be rather easily modified if desired.  

 

1.2.5. Coupling Chemistries 

In order to immobilize molecules to surfaces to create functional molecular devices, e.g., 

antibodies in biosensor applications or charge transferring molecules for solar cells, it is necessary 

to obtain appropriate functionality so that they can interact with the surface to form a bond. For 
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example, according to the previously described methods, the molecules might be functionalized 

with SiOR, SiCl, phosphonic acid, etc. groups for anchoring to oxide surfaces, e.g., metal oxides 

including silicon dioxide, or with diazonium or thiol groups to tether them to metal substrates. A 

variety of coupling chemistries can be employed to achieve this aim as presented in a review article 

by Samanta et al.126 Carbodiimide chemistry127 is effective in the coupling of carboxylic acid and 

amine functionalities to form amide bonds. The amide bond appears to be among Nature’s 

favorites and is, of course, ubiquitous in proteins. This amine-carboxylic acid coupling is usually 

achieved by activation of the carboxylic groups with carbodiimide reagents, followed by 

nucleophilic attack by the amine. Commonly used carbodiimide reagents are N-[3-

(dimethylamino)propyl]-N'-ethylcarbodiimide  and N,N’-dicyclohexylcarbodiimide. These 

reactions have very high yields. Sometimes, N-hydroxysuccinimide is added to these reactions to 

prevent the formation of unwanted byproducts.128 Maleimide chemistry can be used for coupling 

thiols. For example, N-succinimidyl 6-maleimidohexanoate possesses a maleimide residue on one 

end and an N-hydroxysuccinimidyl ester group at its other end. These groups react with thiol and 

amine groups, respectively. Thus, a thiol- or amine-terminated surface can be functionalized with 

biomolecules containing amine or thiol groups, respectively. 

 

1.3. Surface Characterization 

The other important aspect of surface science is surface characterization. Surface 

modification is usually a multistep process that involves the coupling of biomolecules, polymers, 

and other molecules of interest to surfaces. These molecules of interest may either be 

synthesized/modified using conventional solution-based organic chemistry, or a multistep 

modification procedure can be carried out sequentially on a substrate, which may start with the 
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initial modification of the surface with a self-assembled monolayer followed by coupling 

chemistries to bind molecules of interest. In either case it is extremely important to confirm that 

the intended reactions have occurred as desired on one’s surface. A broad range of surface 

analytical techniques are available to monitor the formation of complex molecular assemblies at 

each step. These techniques, as discussed below, give information about the chemical and physical 

properties of the resulting thin films.  

 

1.3.1. X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS)129 is a surface sensitive analytical technique in 

which a sample surface is illuminated with X-rays that eject core electrons from the atoms present 

near the sample surface (see Scheme 1). To a good first approximation, when an X-ray is absorbed, 

a fraction of its energy is ‘spent’ overcoming the nuclear attractive force, and rest of the energy 

appears as the kinetic energy of the electron leaving the sample surface. The kinetic energy of an 

ejected electron is measured by an electron spectrometer, and this kinetic energy is subtracted from 

the original energy of the X-rays to determine the binding energy of ejected electrons. A small 

correction to this calculation is also made, which involves the spectrometer work function. An 

XPS spectrum is obtained by plotting the number (counts) of the photoelectrons vs. their binding 

energies. XPS is a quantitative technique that provides the elemental compositions of the upper 

ca. 10 nm of surfaces. Electrons originating at depths below ca. 10 nm are unable to leave the 

sample surface and/or undergo inelastic scattering process before escaping. These phenomena 

impart surface sensitivity to this technique. In addition to elemental composition, the changes in 

the peak shapes and positions in XPS spectra provide valuable information about the chemical 

environments of the elements present in samples. XPS is generally quite non-destructive, although 
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sample damage does occur, particularly with heavier Z substrates (due to high flux of 

photoelectrons ejected from the substrate) and/or non-monochromatic sources. 

 

1.3.2. Time-of-Flight Secondary Ion Mass Spectrometry 

Time-of-flight secondary ion mass spectrometry (ToF-SIMS)130 is also a surface sensitive 

technique that provides chemical information about the upper ca. 2 nm of sample surfaces. In ToF-

SIMS (see Scheme 2), the sample is irradiated with short pulses of fast moving primary ions that 

on impact sputter material off of the sample surface in the form of ions and neutral species. The 

ions sputtered from a surface in this manner are accelerated under high voltage through a time-of-

flight tube (equipped with reflectron), detected, and then registered as a mass spectrum. ToF-SIMS 

may be performed in either positive or negative ion mode. ToF-SIMS is somewhat destructive in 

nature. Accordingly, the primary ion dose is typically kept below ca. 1013 ions/cm2, which means 

that only ca. < 1% of the sample surface is probed (assuming a sample density of ~1015 atoms/cm2). 

Working within this static limit ensures that the primary ions have a low chance of hitting a 

damaged (previously probed) spot on a surface. A variety of primary ion sources are available, 

including Ga+, In+, Ar+, SF6
+, C60

+, Bin
+, and Aun

+. Unlike XPS, ToF-SIMS is not quantitative in 

nature because the ionization efficiency of a sample is strongly influenced by its chemistry. This 

phenomenon is known as the matrix effect of the technique. Ion yields also depend on the nature 

of the primary ions, where polyatomic primary ions give higher ionization efficiencies, i.e., more 

intense SIMS signals. In comparison to XPS, ToF-SIMS is more surface sensitive (depth of 

information is ca. 2 nm) and it often shows much lower limits of detection. 
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1Scheme 1.1. X-ray photoelectron spectroscopy (XPS) 

 

 

2Scheme 1.2. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) 
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1.3.3. Spectroscopic Ellipsometry 

Ellipsometry131-133 is non-destructive technique that can be applied quickly, often in real 

time, and at atmospheric pressure, to accurately and precisely determine thicknesses and optical 

constants of thin films. These days, ellipsometry is usually performed spectroscopically with a 

range of wavelengths, which remarkably increases the power of the technique. Ellipsometry can 

also be used to probe surface/material conductivity and crystallinity. Spectroscopic ellipsometry 

(SE) is based on the measurement of the change in the polarization state of plane polarized light 

after its specular reflection from a sample surface. Light with another defined polarization state, 

e.g., circular or elliptical, can also be employed. The p- and s- oriented components of plane 

polarized light interact differently with surfaces and materials, so the polarization state of the 

reflected light is often elliptical (see Scheme 3). The change in polarization is captured in the form 

of the amplitude ratio, tan(ψ), and phase difference, ∆, between the p- and s- components after 

reflection from the sample surface. Ellipsometry can also be performed in transmission mode 

where the change in polarization is measure after the light is made to pass through the sample.  

Reflection ellipsometry is the more common approach. Spectroscopic ellipsometry is not 

a direct technique in the sense that the measured response, i.e., tan(ψ) and ∆, cannot generally be 

viewed as the thickness, optical constants, or other properties of interest of a thin film. Rather, a 

model consisting of different layers in a particular sequence is created that is meant to describe the 

actual multilayer structure of a sample. The interaction of each layer with incident light depends 

on its optical constants, thickness, roughness, or presence of voids. In order to find optical 

constants, film thicknesses, and/or other properties of thin films, the optical response is simulated 

using an iterative regression procedure where values of the optical constants, thicknesses, and other 

properties are typically varied to generate tan(ψ)gen and ∆gen that best fit the experimental values:  
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3Scheme 1.3. Spectroscopic ellipsometry 
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tan(ψ)exp and ∆ exp. The goodness of fit between experimental and generated ψ and ∆ values can be 

quantified by calculating the mean square error (MSE) as follows. 
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Where, ‘N’ is the number of ψ and ∆ pairs, ‘M’ is the number of fit parameters, and 𝜎𝜎𝜓𝜓 𝑚𝑚𝑜𝑜 ∆,𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒  

are the experimental standard deviations of the measurements. If too many parameters are included 

in a model, correlation may exist between them that can severely limit the model’s predictive 

abilities. Accordingly, uniqueness tests30 are often performed in which one of the fit parameters is 

fixed at a series of values over a desired range, and the remaining parameters are adjusted to obtain 

the best possible fit, i.e., the lowest MSE. The resulting MSE values are plotted against the values 

of a parameter that is systematically varied. If the resulting plot is a horizontal line, or if it shows 

a great deal of shallowness, the model shows correlation and is unreliable. In contrast, a good 

uniqueness plot will show MSE values rising around the optimal value of the parameter that is 

varied.  

Correlation between optical constants and thicknesses is not generally a problem for 

transparent films, and even semi-transparent films if they have a transparent region, but it is 

generally an issue for thin absorbing metal layers. Fortunately, methods like interference 

enhancement exist that make it possible to accurately measure both optical constants and 

thicknesses of thin metal (absorbing) layers by spectroscopic ellipsometry. In interference 

enhanced SE, a thick layer (~200-500 nm) of dielectric material is introduced between the substrate 

and the layer of interest. This additional layer leads to enhancement in the interaction of the light 
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with the substrate and film, which assists the regression process to allow it to reach a more reliable 

solution, even for a fairly large number of fit parameters. A uniqueness test of the resulting fit can 

verify the absence of correlation between these parameters. 

 

1.3.4. Contact Angle Goniometry 

 Contact angle goniometry is a simple benchtop technique that measures the wettability of 

surfaces.134-135 When a droplet of liquid is placed on a surface (see Scheme 4), its shape is 

determined by the Young equation as follows. 

𝜆𝜆𝑆𝑆𝑆𝑆 =  𝜆𝜆𝑆𝑆𝑆𝑆 + 𝜆𝜆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐Ѳ 

Here, 𝜆𝜆𝑆𝑆𝑆𝑆 , 𝜆𝜆𝑆𝑆𝑆𝑆 , 𝜆𝜆𝑆𝑆𝑆𝑆 are the solid-gas, solid-liquid, and liquid-gas interfacial energies, respectively. 

‘Ѳ’ is the contact angle of the probe droplet at the liquid-gas and solid-liquid interface. Contact 

angle goniometry is an extremely sensitive technique that gives information about the 

hydrophobic/hydrophilic nature of surfaces. It can be performed with water or hydrophobic probe 

liquids like hexadecane. The contact angles can be measured with a static sessile drop method or 

a dynamic method. In the sessile drop method, a drop of known volume is placed on a sample 

surface and its contact angle is measured. In the dynamic method, advancing and receding contact 

angles are measured. To measure an advancing contact angle, a droplet of a probe liquid is placed 

on a surface, after which more liquid is slowly added to the drop until it just moves over the surface. 

The contact angle of the droplet at this point is its advancing contact angle. Receding contact angles 

are measured in a similar fashion. However, in this case, liquid is gradually removed from the drop 

until its contact area with the surface just decreases. The contact angle of the droplet at this point 

is its receding contact angle. The difference between the advancing and receding contact angles is 
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known as the contact angle hysteresis and it is a measure of the pinning properties of the liquid 

drop on the surface. Rougher surfaces tend to show higher hysteresis. 

 

1.3.5. Atomic Force Microscopy 

Atomic force microscopy136-137 is a scanning probe technique in which, in one mode, an 

oscillating cantilever bearing a sharp tip is rastered in close proximity to a sample surface (see 

Scheme 5). The amplitude of cantilever oscillations decreases as it approaches the sample surface 

and vice versa. A constant distance is maintained between the vibrating AFM tip and the sample 

surface by continuously maintaining the amplitude of cantilever oscillations using a feedback 

control system at a point set by the user. The feedback system consists of a laser beam that bounces 

off the back of cantilever to hit a position sensitive detector. When a scanning AFM tip encounters 

an elevated (or depressed) feature on the sample surface it experiences more (or less) pronounced 

atomic forces leading to decrease (or increase) in the amplitude of cantilever oscillations. Any 

changes in the amplitude of cantilever oscillations are detected and corrected by changing the 

height of the sample with respect to the AFM tip using a piezoelectric crystal. The registered values 

of x, y (during the rastering), and changes in z (to maintain constant amplitude of cantilever 

oscillations) are used to construct a three dimensional image of the sample surface. In comparison 

to scanning electron microscopy, AFM offers various advantages. For instance, it does not require 

a vacuum for its operation, insulated samples can be analyzed without needing carbon or a metal 

coating, it gives 3D images of sample topography, and it can be applied to biological samples even 

under water. 
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4Scheme 1.4. Contact angle goniometry 

 

 

 

5Scheme 1.5. Atomic force microscopy 
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1.3.6. Other Techniques 

In addition to the above described analytical techniques, a large number of additional 

analytical instruments exist that are regularly used in surface characterization.138 These include 

scanning electron microscopy (for surface imaging),139 attenuated total internal reflectance Fourier 

transform infrared spectroscopy (for understanding the functional groups at surfaces),140 

Rutherford back scattering,138 nuclear reaction analysis,138 etc. Each technique has its own 

advantages and disadvantages and provides some unique information. A thorough characterization 

of a surface or material usually involves application of more than one technique. In my research 

work, I have applied XPS, ToF-SIMS, spectroscopic ellipsometry, water contact goniometry, and 

on occasion atomic force microscopy. 

 

1.4. Overview of Dissertation 

In this dissertation I explore combinations of several different surface chemistries to 

assemble complex molecular structures with desired properties on planar gold and silicon dioxide 

substrates. In Chapter 1, an introduction is given to various surface chemistry reactions and surface 

characterization techniques. In Chapter 2, I demonstrate an alternative surface modification 

strategy for gold surfaces that shows increased chemical stability. That is, although self-assembled 

monolayers (SAMs) of thiols on gold are the most common surface functionalization of gold, the 

resulting assemblies lack stability. In particular, the sulfur in adsorbed thiols is prone to oxidation, 

which leads to detachment of thiols from gold surfaces, or at least substantial weakening of the 

Au-S bond, in only a few days after their formation. The short-term stability of thiol SAMs might 

not be a problem for the purposes of some laboratory research, but industrial applications or 

applications that demand long-term stability of functionalized gold surfaces require more robust 

chemical methods. In order to improve the stability of functionalized gold surfaces, I used the self-
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assembly of dithiols, instead of monothiols, in combination with thiol-ene click chemistry with 

1,2-polybutadiene to create a gold surface terminated with vinyl groups that can be functionalized 

with single stranded DNA using thiol-ene chemistry. I demonstrated that the final assembly was 

chemically more stable than thiol SAMs alone. The thiol-ene chemistry is a photochemistry that 

bears many of the hallmarks of a ‘click’ chemistry. Clearly this chemistry is also compatible with 

surface photopatterning.  

In Chapter 3, I worked on creating a complex, stable molecular assembly with tunable 

hydrophobic properties. In this work, I used a combination of layer-by-layer (LBL) polyelectrolyte 

deposition with polyallylamine hydrochloride (PAH) and polyacrylic acid (PAA), and thiol-ene 

chemistry with 1,2-polybutadiene and perfluorinated alkanes. The motivation behind using layer-

by-layer deposition was that (1) it gives conformal layers, (2) the deposition process can be easily 

automated, and (3) the thickness of each layer can be well controlled down to nanometer length 

scales. In addition, alternating layers of PAH and PAA can be thermally cross-linked to form amide 

bonds to give a chemically robust structure. The amine groups on amine terminated LBL 

assemblies were converted into thiol groups by Traut’s reagent in order to carry out thiol-ene 

chemistry. I demonstrated that the final assembly was strongly hydrophobic with interesting water 

droplet pinning properties that could be tuned by the extent of heat treatment of the assemblies. 

The final structure also demonstrated long term chemically stability, while retaining its 

hydrophobic properties, at pH 1.68. It was also mechanically stable to wiping with ethanol swabs. 

Detailed surface characterization with suitable methods was carried out during the preparation of 

the functional assemblies described in the second and third chapters of this dissertation. 

The next chapter focuses on applications of surface characterization to solving real world 

problems when little is known about the materials in question. That is, in Chapter 4, X-ray 
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photoelectron spectroscopy (XPS) is used in combination with time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) to understand the cause of corrosion observed on aluminum based 

optical devices. In particular, XPS demonstrates that a mild exposure to the down-stream products 

of a fluorine plasma (as a part of microfabrication of these devices) significantly damages an 

organic corrosion protection layer of nitrilotris(methylene)-triphosphonate on aluminum, and 

converts the aluminum oxide beneath the coating to an aluminum oxyfluoride that is more 

susceptible to corrosion. This aluminum oxyfluoride could be converted back to the more stable 

aluminum oxide by heating it in the air. Principal components analysis was applied to interpret the 

complex ToF-SIMS data.  

The work in this dissertation is consistent with the fact that surface characterization plays 

a critical role in understanding thin films and surfaces. Ideally, we would require these techniques 

to be highly sensitive and accurate. Sometimes, unconventional sample preparation methods are 

required to enhance the sensitivity and reliability of these analytical methods. In Chapter 5, I 

explore enhancement of ToF-SIMS signals by depositing ultrathin layers of bismuth onto a sample 

surface. The sample was a piece of a silicon wafer spin coated with polydiallyldimethylammonium 

chloride (MW 100,000-200,000). This general method is called metal-assisted SIMS (MetA-

SIMS). However, this is the first study that has been carried out with bismuth, which has a very 

high Z value and in many regards is ideally suited for this purpose. An enhancement in the SIMS 

signal by a factor of 10 – 1600 was observed. Here, I also point out a source of error in the meta-

SIMS work presented in the literature. That is, in the meta-SIMS work reported to date, scientists 

have used a quartz crystal microbalance for monitoring the thicknesses of the metal films they 

have deposited, while assuming that the sticking coefficients of the sample and the quartz crystal 

are the same, i.e., unity. Although, in various research articles it has been pointed out that this 
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assumption could be inaccurate, no effort has been made to find a solution. Here, for the first time, 

I incorporate interference enhanced spectroscopic ellipsometry to correctly measure the 

thicknesses of metal layers directly on sample surfaces. I demonstrate the correctness of the 

ellipsometric methods using atomic force microscopy and show, for example, that while bismuth 

sticks to polydiallyldimethylammonium chloride, it does not stick to 1,2-polybutadiene, which was 

additionally confirmed by ToF-SIMS. Finally I demonstrate that sample preparation can play a 

huge role in imparting meaningful information to the final data obtained by this approach. 

In Chapter 6, a holistic summary of the entire work is given and recommendations are made 

as to future work that can be pursued. In Appendix A, I present a short tutorial that demonstrates 

the immense importance of the atomic model first put forward by Niels Bohr about a century ago. 

Here I relate Bohr’s predictions to electron binding energies. Electron binding energies are of 

central importance in X-ray photoelectron spectroscopy, which is one of the most applied 

techniques in my work. In this tutorial, I also describe multiple linear regression as an important 

data fitting tool. In Appendix B, a list of abbreviations used in this dissertation is presented.  
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Chapter 2: Thiol-ene-thiol Photofunctionalization of Thiolated Monolayers 

with Polybutadiene and Functional Thiols, 

Including Thiolated DNA 

Note: Reprinted (adapted) with permission from {Madaan, N.; Terry, A.; Harb, J.; Davis, R. C.; 

Schlaad, H.; Linford, M. R., Thiol–Ene–Thiol Photofunctionalization of Thiolated Monolayers 

with Polybutadiene and Functional Thiols, Including Thiolated DNA. The Journal of Physical 

Chemistry C 2011, 115 (46), 22931-22938.}. Copyright (2011) American Chemical Society. 

 
2.1. Abstract 

Self-assembly of organic thiols is the most common way to introduce functional groups onto 

gold surfaces. The gold-sulfur (Au-S) bond is moderately strong (~45 kcal/mole). However, it is 

prone to oxidation, which substantially weakens the Au-S interaction. In this work, we describe 

the creation of more robust molecular assemblies on gold. As a first step, a thiolated monolayer is 

prepared on gold with an α,ω-dithiol. Experiments are also reported for a mercaptosilane 

monolayer on silicon dioxide. An oligomer of polybutadiene (PBd) was then tethered to these 

surfaces using thiol-ene chemistry. Residual groups on the PBd were then reacted with thiols, 

including octadecanethiol (ODT), 1H,1H,2H,2H-perfluoroalkanethiol, and a thiol-terminated 25-

mer of DNA. Little non-specific adsorption of a non-thiolated DNA oligomer was observed. 

Surface characterization was performed with X-ray photoelectron spectroscopy (XPS), contact 

angle goniometry, time-of-flight secondary ion mass spectrometry (ToF-SIMS), and spectroscopic 

ellipsometry. A thiol-gold monolayer and an analogous assembly of the same thiol tethered to gold 

through PBd on a dithiol monolayer were both exposed to air and light for two weeks and then 
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rinsed with water. The monolayer on gold was removed in this process while the thiol in the 

assembly appeared unaffected. 

 

2.2. Introduction 

 Organic surface functionalization and modification play an important role in many fields, 

including biosensing, lubrication, electrochemistry, catalysis, nanotechnology, biomaterials, and 

biotechnology,1, 2 where two of the persistent requirements for a good surface 

modification/functionalization are robustness in the chemistry and robustness in the final coating. 

One of the most studied and used surface modifications is that of self-assembled monolayers 

(SAMs) of thiols on gold.3-7  

 The ultimate utility of SAMs depends critically on their long-term stability, and a great 

deal of work has been done to understand the role of oxygen,8 ozone, ultraviolet (UV) radiation,9, 

10 hydrocarbon chain length, end group properties,11-13 substrate structure,14 and reaction 

environment (air, water, and ethanol)15, 16 on degradation of SAMs. For example, it is now well 

known that when thiol SAMs on gold are exposed to the ambient environment, oxidation of the 

sulfur head groups occurs, rendering the gold-sulfur (Au-S) bond very weak. Oxidized thiols in 

SAMs desorb upon simple aqueous rinsing, undergoing exchange reactions in fresh thiol solutions, 

even with shorter alkanethiols. Desorption and displacement of oxidized thiols in SAMs shows 

their decreased affinity for gold. The short-term durability of SAMs has made possible their 

extensive characterization, but significantly restricted their possible widespread technological 

application. In comparison to thiol SAMs on gold, silane SAMs on silicon oxide surface have 

demonstrated better thermal17 and tribological stability.18 SAMs on silicon19 and scribed silicon20, 

21 in general are also more stable than SAMs on gold. Nevertheless, due to its unique optical and 
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chemical properties, gold2 is widely used in nanotechnology, either in planar or nanoparticle form, 

as a substrate for SAMs. 

 Various attempts have been made, going back to the early 1990s, to evaluate and improve 

the stability of SAMs. For example, the effect of chemical structure on stability of a variety of 

aromatic/aliphatic SAMs using thermal22-24 and/or electrochemical25-29 desorption methods has 

been studied. In a few cases, the effects of aggressive solvents on SAM stability have been 

evaluated.30 Remarkable improvements in the stability of SAMs were achieved by introducing 

additional, stronger intermolecular interactions, including covalent cross-linking and hydrogen 

bonding. Whitesides et al. achieved five times improvement in the thermal stability of 11-

mercapto-undecanyl-1-boronic acid SAMs on gold by using the reversible cross-linking (via 

dehydration) of their terminal boronic acid groups.24 The stabilities of SAMs containing a 

diacetylene group (SH(CH2)10-(C≡C)2-(CH2)10COOH) were compared before and after 

photopolymerization at 254 nm. The resulting cross-linked SAMs were extremely stable when 

subjected to aggressive solvents, high temperatures (200 °C), and electrochemical desorption.30 

Also terphenyl methanethiol, benzyl mercaptan, and decanethiol SAMs were exposed to 245 nm 

UV radiation. Sulfur oxidation was not observed in the irradiated terphenyl methanethiol SAMs, 

as measured by X-ray photoelectron spectroscopy (XPS).31 Intermolecular cross-linking of 

aromatic SAMs has also been achieved by low energy electron irradiation, although electron 

irradiation usually has a destructive effect on SAMs. (In the case of aromatic SAMs, radiation-

induced cross-linking overpowers radiation induced desorption.) Zharnikov et al. fabricated stable 

cross-linked SAMs of [1,1’;4’,1”-terphenyl]-4,4’’-dimethanethiol (TPDMT) and used them for 

depositing thin metal films of nickel.32 The same group also showed that SAMs of 

perfluoroterphenyl-substituted alkanethiols can be cross-linked by low energy electron radiation 
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to improve their stability.33 Electron irradiated, cross-linked SAMs of 1,1’-biphenyl-4-thiol (BPT) 

were prepared that were thermally stable up to 1000 K, where BPT SAMs that were not cross-

linked were only stable up to 400 K.23 Beyer et al. created stable chemical patterns by localized 

electron induced cross-linking of 4’-nitro-1,1’-biphenyl-4-thiol (NBPT) SAMs followed by 

exchange reactions over the rest of the uncross-linked NBPT with BPT. BPT was unable to 

displace cross-linked NBPT SAMs. The electron exposure also converted (reduced) the nitro 

groups on NBPT to amine groups.34  

 Improved SAM stability has been achieved by intermolecular hydrogen bonding, instead 

of covalent cross-linking.22, 35, 36 In all the literature discussed above, a number of extremely stable 

SAMs were fabricated. However, synthesis of thiolated moieties with complex functionalities like 

diacetylene and di- or terphenyl groups for cross-linking is not an easy task. None of this cited 

research focused on developing a general method for introducing different functional groups onto 

their assemblies in a stable manner. In view of the potential technological importance of robust 

gold surface functionalization, the search for a more versatile strategy has become the goal of this 

work. 

 Thiols have been very useful in another field of chemistry, that of “thiol-ene” chemistry. 

Thiol-ene reactions carry many of the attributes of a click chemistry – they only require mild 

experimental conditions with readily available starting materials, show high yields, require small 

concentrations of benign catalysts, have rapid reaction rates, require essentially no clean up, and 

are insensitive to ambient oxygen and water. These exceptional qualities have made thiol-ene 

chemistry amenable to a variety of applications. Thiol-ene free radical addition can be initiated 

thermally as well as photochemically without addition of any catalyst. Thus, light-mediated thiol-

ene radical reactions have the combined benefits of click chemistry and the advantages of a 
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photoinitiated process, which can be activated at specific times and locations. The ability to 

functionalize/pattern surfaces simply by exposure to light has made thiol-ene chemistry a popular 

surface modification reaction. In 2008, pioneering work by Waldmann and co-workers showed 

photoimmobilization of alkene-functionalized biotin and farnesylated proteins onto thiol-modified 

surfaces, offering a facile method for making protein microarrays.37 Bertin and Schlaad 

functionalized thiol-terminated surfaces with allyl-α-D-glucopyranoside, perfluoro-1-decene, and 

1,2-polybutadiene (PBd).38 Thiol-ene chemistry was exploited as a robust, efficient and orthogonal 

reaction for fabrication of tunable polyethylene glycol- (PEG) and polysiloxane-based cross-linked 

materials for imprint lithography applications.39 It was also used to transfer metallic patterns from 

one substrate to another40 and to make photocurable stamps from a mixture of poly[(3-

mercaptopropyl)-methylsiloxane] and triallyl cyanurate.41 Recently, immobilization of a range of 

thiols including N-acetyl-L-cysteine, D,L-dithiothreitol, 3-mercaptopropionic acid, and 

tetraacetylgalactoside or galactoside-thiol conjugate on alkene-terminated SAMs was achieved by 

photochemical microcontact printing.42 An alkene-terminated, striped, patterned surface obtained 

by Langmuir-Blodgett lithography was successfully functionalized with a fluorescent rhodamine 

thiol using thiol-ene chemistry.43 Thiol-ene chemistry has been exploited to fabricate microarrays 

covalently attached to hydrogel substrates based on PEG44 and for modification of planar polymer 

surfaces45 as well as polymer microspheres,46, 47 covalent layer-by-layer assembly of dithiols and 

dienes48 and for the fabrication of polymer-coated surfaces by free radical polymerization. 

In this paper we explore a method for making thiol-on-gold monolayers more resistant to the 

effects of oxidation. This process appears to involve robust chemistry and leads to more robust 

coatings. This chemistry begins with the formation of dithiol monolayers on gold (Scheme 2.1a), 

which are then modified with PBd via thiol-ene photochemistry.38, 45, 48, 49 The attachment/cross-
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linking of PBd to surface thiol groups appears to provide stability to the underlying SAM. In this 

process, only a fraction of the vinyl groups in the PBd appear to be used in its immobilization, 

allowing subsequent photochemical modification of residual carbon-carbon double bonds with 

other thiols (see Scheme 2.1). The resulting films appear to be more stable against air oxidation 

than comparable thiol-on-gold monolayers. Mercaptosilane monolayers on silicon wafer (SiO2/Si) 

(Scheme 2.1b) could also be modified with thiolated DNA. Ultimately the presence of immobilized 

DNA oligomers on these surfaces may serve to anchor other DNA oligomers or DNA origami in 

a robust manner.50 After each reaction, surfaces were analyzed by contact angle goniometry, 

optical ellipsometry, XPS and/or time-of-flight secondary ion mass spectrometry (ToF-SIMS). 

 

2.3. Experimental Section 

2.3.1. Materials 

 Gold pellets (99.999%, 1/8" Diameter × 1/8" Length) and chromium plated tungsten rods 

were obtained from the Kurt J. Lesker Co., Clairton, PA. Silicon wafers (SiO2/Si) with (100) 

crystallographic orientation, were obtained from University Wafers, Boston, MA. 1,6-

hexanedithiol (HDT) (≥ 97%), octadecanethiol (ODT) (98%), 1,2-polybutadiene (PBd) (approx. 

62 mole % 1,2-addition; Mn = 2.8 kg/mol, Mw = 4.6 kg/mol, as determined by size exclusion 

chromatography), 1H,1H,2H,2H-perfluorododecanethiol (PDDT), 1H,1H,2H,2H-

perfluorodecanethiol (PDT) (97%), perfluorooctane (PFO) (98%), and 3-

mercaptopropyltrimethoxysilane (MPTMS) (95%) were obtained from Sigma-Aldrich, St. Louis, 

MO. Thiolated DNA (DNA-SH) 25-mer and an otherwise identical, non-thiolated DNA were 

obtained from Eurofins MWG Operon, Huntsville, AL; sequence: 5'-

AACCCGCGAGGTCCCCGCCCTACGT-thiol-3'. The obtained DNA was stored in TE buffer   
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Scheme 2.1. Functionalization of (a) Au(111) by HDT and (b) Si(100) by MPTMS and subsequent 

thiol-ene additions of 1,2-PB and other thiolated moieties (e.g. octadecanethiol, 1H,1H,2H,2H-

perfluoroalkanethiol, and DNA-SH). 
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(10 mM Tris, 1 mM EDTA, with pH 8-8.5). Ethanol-200 proof (EtOH), was obtained from Decon 

Labs Inc., King of Prussia, PA. Stabilized tetrahydrofuran (THF) was obtained from Mallinckrodt, 

Phillipsburg, NJ. All chemicals and materials were used as received. 

 

2.3.2. Preparation of Gold Substrates 

 Without any prior cleaning, and in a clean room environment, new silicon wafers (4” 

diameter) were coated by thermal evaporation with an adhesion layer of 10–20 nm of chromium, 

followed by 200 nm of gold. Vacuum was not broken between depositions. The thicknesses of the 

Chromium and gold layers were determined with a quartz crystal thickness monitor in the chamber. 

Based on literature precedent, the gold is expected to have a substantial (111) texture.51 The 

resulting gold coated silicon wafers were then broken into small pieces (ca. 1×1 cm2), which are 

referred to herein as gold substrates or Au(111). For all experiments, the Au(111) was prepared 

fresh and used immediately. 

 

2.3.3. Note on Gold Substrates 

 In our thermal evaporator, up to eighteen silicon wafers could be coated simultaneously. 

Hence, it would have been preferable to process eighteen wafers at a time and to then store them 

for future experiments. To test this possibility, ODT monolayers were prepared on fresh gold 

substrates, EtOH submerged gold substrates (freshly prepared gold substrates that had been stored 

under EtOH), and also on ‘older’ gold substrates, which had been stored for weeks in the air in the 

laboratory. Prior to monolayer deposition, the ‘older’ gold substrates were plasma cleaned or 

cleaned with piranha solution. ODT SAMs were also prepared on gold substrates that had been 

stored in a clean room. With the exception of the fresh Au(111), lower water contact angles and 
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ellipsometric thicknesses were observed on all other gold substrates. These results point to some 

sort of almost irreversible contamination and/or change to the high free energy gold surface during 

storage. Similar statements regarding gold’s propensity to contaminate exist in the literature.52-55 

Therefore, fresh gold substrates were used in all of the experiments reported herein. The optical 

constants of the gold substrates were determined by spectroscopic ellipsometry prior to monolayer 

formation. 

 

2.3.4. Preparation of SAMs 

 For the preparation of HDT SAMs, freshly prepared Au(111) was immersed in 10 mM 

solutions of HDT in EtOH for at least 24 h in the dark. Disposable 20 mL polypropylene vials, 

which were rinsed with EtOH prior to use, were used for this procedure. ODT SAMs were prepared 

from 1 mM solutions in EtOH. After 24 h, Au(111) were carefully removed from the vials, rinsed 

with copious quantities of EtOH, dried under a stream of nitrogen, and fully analyzed. This 

assembly will be referred to as HDT/Au and ODT/Au in the remainder of this work. 

 

2.3.5. PBd Attachment to HDT/Au and ODT/Au Monolayers by Thiol-Ene 

Chemistry 

 To reduce any disulfide bonds that may have formed at the monolayer surface, HDT/Au 

monolayers were immersed in a 100 mM dithiothreitol (DTT) solution in a 50 mM aqueous pH ~8 

buffer.56 ODT/Au control monolayers underwent the same treatment. The surfaces were then 

rinsed with copious amounts of ultrapure water, after which they were dried and placed in 20 mL 

glass scintillation vials, which contained at least 10-15 mL of a 10% w/v solution of PBd in THF, 

where the glass vials were rinsed with THF prior to use. This PBd/THF solution was prepared by 

heating the PBd in THF to solubilize it, although sonication could also be employed for this 
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purpose. To drive the thiol-ene chemistry, the vials were next placed under a 100 W soft white 

light for at least 24 h. After this reaction, the samples and controls were carefully removed from 

the vials, sonicated for 2 min in THF, rinsed with copious amounts of THF, dried under a stream 

of nitrogen, and analyzed. The sample assembly will be referred to as PBd/HDT/Au in the 

remainder of this work. 

 

2.3.6. PBd Functionalization via Thiol-Ene Chemistry 

 The PBd/HDT/Au assembly was reacted with neat PDDT. Accordingly, a small volume of 

PDDT, enough to cover the surface, was dispensed onto a PBd/HDT/Au surface. A glass cover 

slip was placed over the liquid to make a sandwich. This sandwich was then placed in a glass Petri 

dish, which was sealed with Parafilm. The Petri dish was lined with a piece of filter paper that was 

wet with THF, and the sandwich sat on the filter paper. The sandwich/Petri dish were placed under 

a 100 W soft white light for at least 24 h and under these conditions the sandwiches did not dry 

out. Although, 24 h may be more than enough to complete the reaction, no effort was made 

optimize this exposure time. After reaction, the samples were carefully removed, washed with 

copious amounts of THF, dried under a stream of nitrogen, and analyzed. As a control, 

PBd/HDT/Au was also reacted with PFO under the same experimental conditions. The sample 

assembly will be referred to as PDDT/PBd/HDT/Au in the remainder of this work. 

 

2.3.7. Modification of SiO2/Si with MPTMS 

 Shards of SiO2/Si were oxygen plasma cleaned (200 W) and then reacted with MPTMS by 

chemical vapor deposition (CVD) in a YES 1224P plasma/chemical vapor deposition system 

(Yield Engineering Systems, Livermore, CA). The samples were kept on the float plate for plasma 
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cleaning, which should lead to little or no increase in the oxide thickness.57 The volume of the 

silane introduced to the vacuum chamber for CVD was 2 mL. This assembly will be referred to as 

MPTMS/SiO2/Si in the remainder of this work. 

 

2.3.8. Thiol-ene Chemistry on Thiol-Terminated SiO2/Si 

 Shards of thiol-terminated Silicon wafer (MPTMS/SiO2/Si) were reacted with PBd under 

the same experimental conditions as for HDT/Au. The PBd/MPTMS/SiO2/Si assembly was then 

reacted with DNA-SH. As a control, PBd/MPTMS/SiO2/Si was also reacted with otherwise 

identical non-thiolated DNA. The DNA-SH and DNA solutions were 100 μM in water with excess 

of tris(2-carboxyethyl)phosphine (TCEP). TCEP was added to reduce DNA-S-S-DNA to 2 DNA-

SH. No effort was made to remove unreacted/reacted TCEP as it was not expected to interfere with 

the thiol-ene chemistry. Droplets of the DNA-SH and DNA solutions were placed on 

PBd/MPTMS/SiO2/Si surfaces. No glass cover slip was placed over the surface. To prevent drying, 

the samples were placed in a 6” diameter Petri dish, which was then placed in a larger container 

with water at its bottom. The top of the container was covered with clear plastic wrap and exposed 

to soft white light for at least 24 h. Under these conditions, the droplets of DNA-SH and DNA 

solutions remained visible on the PBd/MPTMS/SiO2/Si surfaces over the entire reaction period. 

After the reaction, the samples were rinsed with copious amounts of ultrapure water, dried with a 

stream of nitrogen, and analyzed by spectroscopic ellipsometry, contact angle goniometry, and 

XPS. 
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2.3.9. Stability Studies 

 The stability in the air of PDT/PBd/HDT/Au was compared to that of a PDT SAMs on 

Au(111). The PDT/PBd/HDT/Au assembly was prepared in the same way as 

PDDT/PBd/HDT/Au. The SAMs of PDT were prepared by immersing freshly prepared Au (111) 

in a 1 mM ethanolic solution of PDT in the dark for 24 h, after which the SAMs were rinsed with 

copious amounts of EtOH and dried under stream of nitrogen. Some samples of 

PDT/PBd/HDT/Au and PDT/Au were analyzed immediately after formation by XPS. Others were 

placed in empty beakers and covered with transparent plastic wrap. The plastic wrap was pierced 

at several spots to allow passage of air. The samples were kept in glass beakers for 2 weeks (in the 

air and exposed to room light), removed, rinsed with copious amounts of water, and analyzed by 

XPS. 

 

2.3.10. Surface Analytical Techniques 

 Advancing water contact angles were measured with a contact angle goniometer (model 

100-00) from Ramé-Hart Inc., Netcong, NJ. Thin film thicknesses were measured with an M-2000 

ellipsometer from the J. A. Woollam Co., Lincoln, NE. XPS was performed with a model SSX-

100 spectrometer with a hemispherical analyzer and a monochromatic Al Kα source. Time-of-

flight secondary ion mass spectrometry (ToF-SIMS) was performed with a ToF-SIMS IV 

instrument (ION-TOF, Münster, Germany) with a gallium liquid metal ion source. 

 

 

 

 

48 
 



www.manaraa.com

2.4. Results and Discussion 

2.4.1. Preparation of SAMs and Attachment of PBd to SAMs 

 It is known that ethanolic solutions of ODT at millimolar concentrations can produce 

closely packed SAMs on gold surfaces. Literature thicknesses (ca. 22 Ǻ)18 and advancing water 

contact angles (ca. 114°)58 of ODT SAMs closely match our results (see Table 2.1). For α,ω-

dithiols, it had been a topic of debate whether they form monolayers in a standing up phase (one 

sulfhydryl group remaining unreacted) or in a lying down phase (both thiols binding to the surface). 

As recently shown by Esaulov et al., these results depend on the length of the dithiol;58 dispersion 

forces between methylene units appear to play a crucial role in dithiol monolayer formation, where 

dithiols containing fewer than six methylene units were always found to attach to gold in a lying 

down phase. At six methylene units, the formation of a lying down or a standing up phase depends 

on reaction conditions (the solvent and oxygen content of the solvent), but dithiols with nine or 

more methylene units always produce monolayers in a standing up phase. Our HDT/Au 

monolayers (six methylene units) were consistently ca. 6-7 Ǻ thick, which is about 1/3 the 

thickness of our ODT/Au monolayers (eighteen methylene units), and suggests a standing up 

phase. (With older HDT solutions or extended periods of self assembly, i.e. a few days, thicknesses 

up to 15 Ǻ were observed, which might be due to multilayer formation via disulfide linkages. 

When these samples were immersed in DTT solutions for 10 minutes, a decrease in thickness was 

observed. In all experiments reported here, the self assembly of HDT on gold was stopped after 24 

h by removing and rinsing the sample.) Water contact angles of HDT/Au monolayers were 62-72° 

(see Table 2.1). These and the ellipsometry results suggest that our HDT/Au monolayers exist in 

a standing up phase with free surface thiol groups. The attachment of PBd to these surfaces helps 

to further confirm this hypothesis (vide infra). XPS of ODT/Au monolayers show the expected 
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strong carbon signal. ToF-SIMS of both ODT/Au and HDT/Au shows S− and SH− peaks in its 

negative ion mode. 

 As formed, the HDT/Au surface may possess a few disulfide linkages that could affect the 

efficiency of thiol-ene chemistry. Hence, HDT/Au was activated by immersion in a solution of 

DTT for 10 minutes. The samples were then reacted with PBd. After this reaction, a consistent 

increase in thickness of 6.3-7.5 Ǻ was observed (see Table 2.1), and advancing water contact 

angles increased to 81° which is very close to the reported contact angle of 87° of a PBd 

functionalized MPTMS/glass surface.37 However, when a control surface, ODT/Au, was similarly 

exposed to PBd, no change in water contact angle or thickness was observed. This was expected 

because, unlike HDT/Au, there are no surface thiol groups on ODT/Au to react with PBd. Positive 

ion ToF-SIMS of HDT/Au and ODT/Au after reaction with PBd corroborates these claims. Figure 

2.1a shows a reference spectrum for PBd,44 where peaks at m/z = 77, 79, 91, and 105 are 

characteristic of this material. Figure 2.1b shows the ToF-SIMS spectrum of HDT/Au after 

reaction with PBd. All of the peaks characteristic of PBd are observed. Figure 2.1c shows the ToF-

SIMS spectrum of ODT/Au after reaction with PBd. The characteristic peaks of PBd are missing. 

On the basis of these results we conclude that under our deposition conditions HDT forms SAMs 

in the standing up phase that successfully react with PBd to form PBd/HDT/Au assemblies.  
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 # HDT/Au  PBd/HDT/Au 

 
Ellipsometric 

Thickness (Ǻ) 

Water Contact 

Angle (°) 

 Ellipsometric 

Thickness (Ǻ) 

Water Contact 

Angle (°) 

1 6.9 68  13.8 81 

2 6.1 72  12.4 79 

3 7.3 62  14.8 82 

Average 6.8 ± 0.6 67 ± 5  13.7 ± 1.2 81 ± 2 

      

# ODT/Au  ODT/Au reacted with PBd 

 
Ellipsometric 

Thickness (Ǻ) 

Water Contact 

Angle (°) 

 Ellipsometric 

Thickness (Ǻ) 

Water Contact 

Angle (°) 

a 23.3 112  22.3 >110 

b 22.8 115  22.8 >110 

c 21.7 114  21.7 >110 

Average 22.6 ± 0.8 114 ± 2  22.3 ± 0.5  

 

Table 2.1. Characterization of 1,6-hexanedithiol/gold (HDT/Au) and octadecanethiol/gold 

(ODT/Au) monolayers by spectroscopic ellipsometry and advancing water contact angles before 

(left) and after (right) reaction with polybutadiene (PBd).  
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Figure 2.1. Positive ion mode ToF-SIMS spectrum (all spectra scaled to the m/z = 41 peak) of   (a) 

PBd reference, (b) PBd/HDT/Au, and (c) ODT/Au ‘reacted’ with PBd. 
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2.4.2. Modification of PBd/HDT/Au by Thiol-Ene Chemistry 

 The PBd/HDT/Au assembly discussed in the previous section was expected to possess 

unreacted vinyl groups at its surface that could further react with different thiols through thiol-ene 

chemistry. Accordingly, PBd/HDT/Au assemblies were reacted with neat PDDT, a concentrated 

solution of ODT in THF, and also neat PFO as a control. When PBd/HDT/Au was reacted with 

PDDT, increases in thickness (6.3 Ǻ) and advancing water contact angles (to 101.5°) were 

observed (see Table 2.2). When PBd/HDT/Au was reacted with ODT, an increase in thickness of 

12.8 Ǻ was observed, and the advancing water contact angle of the surface increased to 105° (see 

Table 2.2). These results suggest that, in addition to PDDT and ODT, a variety of thiols could be 

successfully attached to PBd/HDT/Au. As a control, PFO (bearing no SH group and thus not 

expected to react with PBd) was placed on PBd/HDT/Au. In this case, the thickness of the 

assembly increased slightly and its water contact angles dropped to the range of 55-65° (see Table 

2.2). These results suggest a small degree of contamination of the surface (vide infra), but do not 

appear to be consistent with attachment of PFO. These results are further confirmed by XPS of the 

PBd/HDT/Au assembly after reaction with PDDT and PFO (see Figure 2.2). XPS is quite sensitive 

to fluorine. Interestingly, a strong F1s signal is observed after ‘reaction’ with both PDDT and PFO, 

which would appear to contradict the results above. However, a closer examination of the spectra, 

and in particular the XPS C1s narrow scans, shows a strong peak due to carbon chemically shifted 

by fluorine after the PBd/HDT/Au + PDDT reaction (Figure 2.2a), where this signal is completely 

absent after PBd/HDT/Au ‘reacts’ with PFO (Figure 2.2b). We conclude that the thiol-ene 

chemistry is working as expected, but that some contaminant, perhaps an inorganic fluoride, is 

introduced onto the PBd/HDT/Au surface from the PFO. 
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# PDDT/PBd/HDT/Au  PBd/HDT/Au reacted with PFO 

  

Ellipsometric 

Thickness (Ǻ) 

Water Contact 

Angle (°) 

 Ellipsometric 

Thickness (Ǻ) 

Water Contact 

Angle (°) 

1 20.1 101  14.7 55 

2 19.8 102  14.6 65 

Average 20.0 ± 0.2 102 ± 1  14.7 ± 0.1 60 ± 5 

      

# ODT/PBd/HDT/Au    

 

Ellipsometric 

Thickness (Ǻ) 

Water Contact 

Angle (°) 

 

  

1 26.8 -    

2 28.0 105    

Average 27.4 ± 0.9 105    

 

Table 2.2. Characterization of PBd/HDT/Au monolayers by spectroscopic ellipsometry and 

advancing water contact angles before (left) and after (right) reaction with 1H,1H,2H,2H-

perfluorododecanethiol (PDDT) and perfluorooctane (PFO), respectively. 
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Figure 2.2. C1s XP narrow scans of (a) PDDT/PBd/HDT/Au and (b) PBd/HDT/Au ‘reacted’ with 

PFO.  
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2.4.3. Attachment of DNA-SH to PBd/MPTMS/SiO2/Si 

 A question/concern raised in the previous section might be regarding the actual position of 

attachment of the PDDT and/or ODT to the PBd/HDT/Au surface. That is, while in theory the Au 

surface should be blocked by HDT, and it is further covered with a layer of PBd, one might argue 

that because of the well-known tendency for thiols to replace each other on gold,59, 60 there are 

actually two possible attachment points for the thiols on PBd/HDT/Au: to the vinyl groups from 

PBd and to the gold surface itself. In other words, perhaps there is no reaction between vinyl groups 

on PBd and the two thiols, i.e., they simply bind to the gold surface. Of course the observed 

changes in water contact angles and ellipsometric thickness are more consistent with thiol 

attachment to vinyl groups in PBd than to the gold surface, but these data do not completely dismiss 

this issue. Accordingly, we created a thiolated monolayer using CVD of MPTMS on a different 

substrate that does not react with thiol groups: SiO2/Si. This new monolayer (MPTMS/SiO2/Si) 

was then reacted with PBd to make PBd/MPTMS/SiO2/Si, which was in turn exposed to DNA-SH 

and DNA. 

 The thickness of the SiO2 native oxide layer on Si(100) shard was not measured so we 

could not find the exact thickness of the MPTMS layer. However, assuming an SiO2 thickness of 

2 nm, which is very typical for the many native oxide layers we have measured in our laboratory, 

we find an increase in thickness of ca. 5 Ǻ for MPTMS (see Table 2.3). The average water contact 

angle for MPTMS/SiO2/Si was 65° (see Table 2.3), which closely matches the advancing water 

contact angle of the HDT/Au surface (see Table 2.1) as well as a literature value (~68°) for a thiol-

terminated surface.61 Note that these results further support the assumption above that our HDT/Au 

monolayer has (at least) a major contribution from its standing up phase. After reaction with PBd, 

MPTMS/SiO2/Si surfaces showed increases in thickness of ~9 Ǻ and water contact angles of 81°. 
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This thickness increase is a little more than was observed for the addition of PBd to HDT/Au, but 

the water contact angles of both surfaces are the same. 

 The PBd/MPTMS/SiO2/Si samples were reacted with DNA-SH and an average increase in 

thickness of 7 Ǻ and decrease in contact angle from 81° to 55° were observed (see Table 2.3). This 

was expected as DNA is more hydrophilic than PBd. For addition of the non-thiolated DNA, no 

difference in film thickness was observed, although the water contact angles of the surfaces 

decreased somewhat (see Table 2.3). XPS of these materials helps clarify these results. The XPS 

of PBd/MPTMS/SiO2/Si reacted with DNA-SH showed a strong nitrogen peak, which is consistent 

with DNA-SH attachment (see Figure 2.3a). This peak is much smaller, but not entirely absent, in 

the control in which PBd/MPTMS/SiO2/Si was ‘reacted’ with DNA (Figure 2.3b). Thus, it appears 

that a small amount of non-specific attachment occurred between DNA and the 

PBd/MPTMS/SiO2/Si assembly, which would explain the surface characterization results. Hence, 

these results are consistent with specific and preferred DNA-SH attachment to 

PBd/MPTMS/SiO2/Si via thiol-ene chemistry, and by extension they point to specific attachment 

of thiols to the vinyl groups of PBd/HDT/Au. We expect that the above prepared DNA terminated 

surfaces will also undergo hybridization with complementary DNA strands based on available 

literature where even electrostatically immobilized DNA probes demonstrated efficient 

hybridization.62-64 

 

2.4.4. Stability Comparison of PDT/PBd/HDT/Au and PDT/Au 

 Freshly prepared PDT/PBd/HDT/Au and PDT/Au assemblies were analyzed by XPS. For 

both samples, the C 1s narrow scan obtained by XPS revealed two peaks. The peak at higher 

binding energy (~290 eV) corresponds to carbon bonded to >1 fluorine (C-F peak) and the peak at  
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Table 2.3. Ellipsometric thicknesses and advancing water contact angles of 3-

mercaptopropyltrimethoxysilane (MPTMS) thin films on Si, PBd-terminated MPTMS/Si surfaces, 

and PBd/MPTMS/Si surfaces after exposure to DNA-SH and DNA. ‘Si’ indicates silicon surfaces 

terminated with native oxide.  

# MPTMS/Si  PBd/MPTMS/Si 

 

Total Ellipsometric 

Thickness (Ǻ) 

Water Contact 

Angle (°) 

 Total Ellipsometric 

Thickness (Ǻ) 

Water Contact 

Angle (°) 

1 25.7 67  35.2 80 

2 25.0 62  37.5 80 

3 26.1 63  34.3 82 

4 28.9 68  34.0 82 

Average 26 ± 2 65 ± 3  35 ± 2 81 ± 1 

      

# DNA-SH/PBd/MPTMS/Si  PBd/MPTMS/Si reacted with DNA 

 

Total Ellipsometric 

Thickness (Ǻ) 

Water Contact 

Angle (°) 

 Total Ellipsometric 

Thickness (Ǻ) 

Water Contact 

Angle (°) 

1 42.4 52  30.5 66 

2 41.0 58  35.2 - 

Average 42 ± 1 55 ± 4  33 ± 3 66 
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Figure 2.3. N1s XP narrow scans of (a) DNA-SH/PBd/MPTMS/Si and (b) PBd/MPTMS/Si reacted 

with DNA. 
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lower binding energy (~285 eV) corresponds to carbon bonded to carbon and/or hydrogen (C-C,H 

peak). For the PDT/PBd/HDT/Au sample, the relative height of the C-F peak is much less than the 

C-H peak as there is a huge network of HDT SAM and PBd, which contribute to this signal. In 

addition, the attachment of PDT to the PBd/HDT/Au surface by thiol-ene chemistry is not expected 

to yield a densely packed PDT layer (unlike a PDT SAM directly assembled on to a gold surface). 

As expected, for the PDT/Au sample, C-F peak is more intense than the C-H peak as 8 out of 10 

carbon atoms in the PDT molecule are bonded to fluorine atoms. It is also clear that some 

hydrocarbon surface contamination is contributing to the C-H envelope for the samples analyzed 

in this section. 

  To mimic typical storage conditions for many laboratory materials, they were then 

exposed to air and light for 2 weeks, rinsed with copious quantities of ultrapure water, and 

reanalyzed by XPS (see Figure 2.4c, d). After exposure to air/light and rinsing, the C-F peak 

completely disappears from the C1s narrow scan of the PDT/Au monolayer. In contrast, for the 

PDT/PBd/HDT/Au assembly, the C-F peak is still present and largely unchanged. On the basis of 

these results we conclude that the PDT/PBd/HDT/Au assembly is much more chemically stable 

than PDT/Au. We attribute this increased stability to indirect surface anchoring of PDT through 

PBd, where the PBd in turn should be bonded to the surface at multiple points. The increased 

molecular weight of the adsorbate (the PDT/PBd adduct) no doubt also contributes to the observed 

stability. Hence, although the thiol groups of HDT may oxidize, they could still serve to anchor 

(and preserve) the assembly through multiple, weak interactions. 
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Figure 2.4. C1s XP narrow scans of (a) PDT/PBd/HDT/Au and (b) PDT/Au immediately after 

preparation and (c) PDT/PBd/HDT/Au and (d) PDT/Au after exposure to light and air for 2 weeks 

followed by rinsing with water. 
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2.5. Conclusions 

 We have demonstrated that fresh gold substrates can be successfully functionalized with 

robust assemblies consisting of dithiols followed by photochemical attachment of PBd, which can 

be further modified by functional thiols. The same chemistry is also operable on mercaptosilane 

monolayers on silicon dioxide. The chemisorbed PBd was functionalized with ODT, 

1H,1H,2H,2H-perfluoroalkanethiol, and DNA-SH. The PDT/PBd/HDT/Au assembly is more 

stable in air and light than the thiol directly attached to the gold surface. This more stable assembly 

may serve as a substrate for a variety of applications, such as sensing, nanotechnology, and 

biotechnology. 
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Chapter 3: Complex, Stable Molecular Assemblies Prepared by the Integration 

of Multiple Surface Reactions: Layer-by-Layer, Thiol-ene, 

Bioconjugate, and Silanization Chemistries 

Note: The work presented in this section is will be submitted to a journal for review as Madaan, 

N., Tuscano, J., Romriell, N., Schlaad, H., Linford, M. R., Complex, Stable Molecular Assemblies 

Prepared by the Integration of Multiple Surface Reactions: Layer-by-Layer, Thiol-ene, 

Bioconjugate, and Silanization Chemistries. 

 

3.1. Abstract 

 In this work, I explore the formation of complex molecular assemblies prepared from 

multiple surface chemistries that include: the layer-by-layer (LBL) deposition of polyelectrolytes, 

thiol-ene chemistry, bioconjugate chemistry, and silanization. More than 100 different 

polyallylamine hydrochloride (PAH)/polyacrylic acid (PAA) LBL assemblies were prepared at 

either pH 5 or 8 and their surface properties were averaged and plotted. To the best of my 

knowledge, this is the largest set of PAH/PAA samples that has been prepared and reported in the 

literature, and I explore their thermal cross-linking over a wider range of conditions than has been 

previously reported. The stability of the resulting assemblies was also explored. Even with the 

monochromatic X-ray source, some sample damage/cross-linking was observed during sample 

analysis by XPS. Amine groups at the surfaces of these assemblies were converted to –SH groups 

with Traut’s reagent, and this reaction was optimized with regards to temperature, concentration, 

and pH. The oxidation state of the adsorbed thiols was probed by XPS; sulfur-containing species 

were found to exist as thiolates (-S-), thiols (-SH), or oxidized sulfur. The -S- content of the surfaces 

could be lowered by rinsing with dilute acetic acid. Even relatively limited exposure of these 
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assemblies to air resulted in oxidation of the thiols and thiolates. Molecular assemblies terminated 

with –SH could be modified with 1,2-polybutadiene (PBd) via thiol-ene chemistry under 254 nm 

light. Excessive exposure to UV light damaged the assemblies. A second thiol-ene reaction with a 

fluorinated thiol could be performed on PBd-terminated assemblies. Surfaces with high water 

contact angles (ca. 120°) were obtained. After long immersions (9 days) in water, these films lifted 

off their substrates. Surface silanization with an amino silane prevented this delamination and led 

to very stable assemblies. Water droplet pinning could be controlled on these hydrophobic 

assemblies by varying the thermal cross-linking. 

 

3.2. Introduction 

 For at least the last two decades, surface modification has been a very active area of 

research in modern science because of the many potential applications of functionalized surfaces 

in biosensors, fuel cells, photovoltaics, bioconjugate chemistry, molecular electronics, adhesion, 

and microfluidics.1 Some of the basic building blocks of such advanced materials are self-

assembled monolayers on gold,2-4 organosilane monolayers on hydroxylated surfaces,5-9 alkene 

and alkyne monolayers on hydrogen-terminated silicon,10-15 phosphonates on alumina, zirconia, 

and related substrates,16-19 the many reactions of bioconjugate chemistry,20 the layer-by-layer 

assembly of polyelectrolytes and other charged species,21-24 thiol-ene chemistry,25-29 and carbon 

nanotubes.30-32 Complex molecular assemblies on surfaces may be prepared using combinations 

of different surface chemistries that are compatible with a specific substrate and each other. 

 Of all their possible applications, complex molecular assemblies may prove to be of 

greatest value in the field of molecular electronics.33-35 That is, with the shrinking feature sizes of 

modern electronic devices, we are entering the realm of molecular nanotechnology that is well 
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beyond the diffraction limits of visible and even most UV light. It is conceivable that in this realm 

devices will increasingly be prepared in a bottom up approach by self-assembly. The realization 

of this goal will require precise control of molecular components using reliable surface 

chemistries, where in general, more than one type of molecular component will be deposited and 

more than one type of surface chemistry will be employed. Much has been done in this regard – 

some of this research has been performed in Linford’s research group at BYU, which I joined as a 

graduate student in 2008 – and much remains to be undertaken.1, 36-37  

 To continue contributing to this effort, I explore herein and also combine a series of surface 

chemistries to form a complex molecular assembly. In particular, I explore the capabilities of and 

interplay between the layer-by-layer (LBL) assembly of polyelectrolytes, a reaction from 

bioconjugate chemistry (the conversion of an amine to a thiol with Traut’s reagent (2-

iminothiolane)), thiol-ene chemistry, and surface silanization. Film growth and composition have 

been confirmed by surface analytical techniques such as X-ray photoelectron spectroscopy (XPS), 

spectroscopic ellipsometry (SE), atomic force microscopy (AFM), and contact angle goniometry 

to optimize and understand the experimental conditions at each modification step. 

 In particular, I begin this study with the layer-by-layer (LBL) deposition of polyallylamine 

hydrochloride (PAH) and polyacrylic acid (PAA). There are a number of reports of this system in 

the literature.38-41 However, here I synthesized and characterized (with the help of other team 

members) more than 100 different PAH/PAA coated surfaces that were prepared at two different 

solution pH values: ca. 5 or ca. 8. Consistent with previous observations,42 exponential film growth 

was observed. Thicker films began to show visible defects and become rougher, as determined by 

AFM. These films were then thermally cross-linked.42 The effect of cure temperature (150 – 

250 °C) and time (1 – 3 h) on the extent of thermal cross-linking was investigated. Amide bond 
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formation was expected here. X-ray photoelectron spectroscopy showed the expected reduction in 

the quantity of oxygen after cross-linking. Films also decreased in thickness after cross-linking. 

Uncross-linked PAH/PAA assemblies were stable against sonication in water (20 min), 

tetrahydrofuran (THF) (15 min), and ethanol (20 min). In a pH 1.68 buffer, the uncross-linked 

assembly desorbs from the substrate, while the cross-linked assembly is unaffected. Cross-linked 

assemblies are more stable at elevated pH than their uncross-linked counterparts. 

 Amine groups at the surfaces of uncross-linked and cross-linked PAH-terminated 

PAH/PAA assemblies ((PAH/PAA)nPAH) could be converted into thiols using a well-known 

reagent from bioconjugate chemistry: Traut’s reagent.43-44 

 

 

 

 This reaction was explored at two temperatures (0 and 20 °C), at three concentrations of 

Traut’s reagent (0.001, 0.01, and 0.1 M), and at two pH values: 5 and 8. This reaction was favored 

at higher temperatures, higher concentrations of Traut’s reagent, and higher pH values. 

 Thiols are prone to oxidation, and oxidized thiols are not expected to undergo thiol-ene 

chemistry. Accordingly, the oxidation states of the thiol-terminated surfaces were investigated. 

XPS narrow scans of the 2s region of sulfur could be fit to three peaks, suggesting three oxidation 

states for sulfur that were attributed to oxidized sulfur, –SH groups, and thiolate (-S-) groups. 

Rinsing of the assemblies in dilute acetic acid converted surface –S- groups into –SH groups. Even 

a day or two of exposure to the air resulted in a considerable decrease in the surface thiolate and 
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thiol concentrations. Thus, the –SH terminated assemblies were used immediately after their 

preparation. 

 Thiol-ene reactions constitute an extremely versatile chemistry for creating molecular 

assemblies and modifying surfaces,25-26, 29 and thiol-terminated assemblies underwent a reaction 

with 1,2-polybutadiene (PBd) under UV light. The addition of PBd to the surfaces substantially 

changed their wetting properties. Excessive exposure to UV light damaged and even destroyed the 

assemblies. 

 Obviously not all of the carbon-carbon double bonds in the chemisorbed PBd react with –

SH groups from Traut’s reagent upon chemisorption because PBd-terminated assemblies undergo 

further thiol-ene chemistry with perfluorordecanethiol. Surfaces with high water contact angles 

(ca. 120°) are thus obtained. As before, longer exposures to UV light destroyed the assemblies. 

After long immersions in water, (PAH/PAA)n/PAH/Traut’s reagent/PBd/perfluorordecanethiol 

assemblies delaminated/lifted off their substrates. Silanization of the substrates with (3-

aminopopyl)triethoxysilane (APTES) to form APTES/cross-linked (PAA/PAH)n/Traut’s 

reagent/PBd/perfluorordecanethiol assemblies prevented this delamination, i.e., amide bond 

formation was expected between the amino groups from the silane and carboxyl groups from the 

PAA. These assemblies were stable against ethanol wipes and the Scotch tape test. The wetting of 

these complex assemblies was affected by the degree of cross-linking in them. 

 I would like to emphasize that the purpose of this work was not to build a molecular 

assembly with a direct commercial or practical application. Rather, the focus of this work is to 

explore the interplay between a unique combination of important surface chemistries, while 

simultaneously providing more extensive surface/material characterization, optimization, and 

understanding than is currently in the literature. I learnt that application of the right surface 
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chemical reactions play a very crucial role in overall properties of the molecular assembly. In this 

work, employing cross-linked LBL layers beneath PDT modified PBd layers imparted unique 

water droplet pinning properties (tunable) to the whole assembly. Such properties are harder to 

achieve and usually accomplished by using a tedious patterning procedure. But in this work, such 

properties were achieved in a very facile manner.  

 

3.3. Experimental 

3.3.1. Materials 

 Polyallylamine hydrochloride (PAH) (Mw~58000), polyacrylic acid (PAA) (Mw~10000), 

1,2-polybutadiene (PBd) (approx. 90% 1,2-vinyl), triethanolamine hydrochloride (TEA, ≥ 99.0 %) 

and 1H,1H,2H,2H-perfluorodecanethiol (PDT, 99.0 %) were purchased from Sigma-Aldrich (St. 

Louis, MO). Traut’s reagent was purchased from ProteoChem (Denver, CO). Ethanol (200 proof) 

was obtained from Decon Laboratories (King of Prussia, PA). Stabilized THF was obtained from 

Mallinckrodt, Phillipsburg, NJ. The water (resistivity 18 MΩ-cm) used for making solutions and 

rinsing surfaces was obtained from a Milli-Q water system by Millipore (Billerica, MA). Silicon 

wafers (Si/SiO2), 4 inches in diameter, with (100) crystallographic orientation and native oxide 

were obtained from University Wafers (Boston, MA). 

 

3.3.2. Electrostatic Layer-by-Layer (LBL) Assembly of PAH and PAA  

 Aqueous solutions of polyallylamine hydrochloride (PAH) (0.02 M) and polyacrylic acid 

(PAA) (0.01 M) were prepared in high purity water. The pH values of the PAH and PAA solutions 

were adjusted using dilute NaOH to ~5 and ~5.7 or to ~8 and 8.7, respectively. Shards of Si(100), 

ca. 1.5 x 1.5 cm2, were cleaned either for 1 min with an air plasma cleaner (Model PDC-32G from 
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Harrick Plasma, Ithaca, NY) or in piranha solution (H2O2:H2SO4, 30:70) to remove organic 

contamination. Clean silicon shards were then immersed sequentially in a solution of PAH, 

ultrapure water, a solution of PAA, and again in ultrapure water. Immersion times were 5 min in 

each case. Between each immersion, silicon shards were rinsed with copious amounts of Millipore 

water and dried with a stream of nitrogen (N2). This LBL deposition of the polyelectrolytes was 

repeated until the desired thickness of the assembly was obtained. These films were prepared by 

three different laboratory workers (myself, Joshua Tuscano, and Naomi Romriell), and from 

solutions prepared on different days. Fresh polyelectrolyte solutions were not prepared if older 

solutions (1 to 15 days old) were available. Increases in thickness were monitored by spectroscopic 

ellipsometry (SE) after the majority of the deposition steps for more than 100 individual samples. 

The samples were also analyzed by XPS and AFM.  

 

3.3.3. Thermal Cross-Linking 

 The LBL assemblies prepared as described above were placed individually in a glass tube 

(25 mm inner diameter), and the center portion of the glass tube was wrapped with heating tape. 

A thermocouple was inserted into the tube to provide feedback to a PID controller to automatically 

maintain the temperature in it. An inert atmosphere was then created in the tube by flowing N2 gas 

through it. In this manner, electrostatic LBL assemblies were heated at 150 °C, 200 °C, and 250 °C 

for 1, 2, and 3 hrs. The samples were then characterized by SE, XPS, and contact angle goniometry.  

 

3.3.4. Conversion of Amines to Thiols 

 Amine groups were converted into thiols in an aqueous solution at ca. pH 5 of 0.1, 0.01, or 

0.001 M Traut’s reagent. The pH of the ultrapure (Millipore) water used to make the solutions was 
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ca. 5, and no effort was made to adjust the pH of these solutions after addition of Traut’s reagent. 

For the pH 8 reactions, triethanolamine (TEA), 3.73 g, was dissolved in 25 mL of high purity water 

and the pH of this solution was adjusted to ca. 8.0 using conc. HCl. Traut’s reagent was then added 

to this solution to prepare 0.1, 0.01, or 0.001 M solutions of this reagent. All solutions were made 

fresh, immediately before they were used. Cross-linked and uncross-linked PAH-terminated LBL 

assemblies were immersed in 1.5 mL of one of these solutions for 30 min, after which they were 

rinsed with copious amounts of Millipore water and dried under a stream of N2 gas. The resulting 

samples were characterized by XPS, time-of-flight secondary ion mass spectrometry (ToF-SIMS), 

contact angle goniometry, and SE. 

 

3.3.5. Thiol-ene Chemistry 

 A UV lamp (254 nm, 18 Watt) was mounted inside a polyethylene glove bag that was 

continuously purged with N2. Thiol-terminated LBL assemblies were immersed in 12.5 – 50% w/v 

PBd/THF solutions in Teflon containers and exposed to UV light for 5 – 11 h. Samples were then 

rinsed with THF, sonicated in THF for 5 minutes, rinsed with THF again, and dried with a stream 

of nitrogen. The PBd-terminated samples created in this way were then immersed in neat 

perfluorordecanethiol (PDT) in Teflon containers and again exposed to UV light for 4 – 12 h in an 

N2 purged glove bag. The resulting samples were characterized by SE and contact angle 

goniometry.  
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3.3.6. APTES Deposition 

 Air plasma cleaned silicon substrates were placed in 2% solutions of 3-

aminopropyltriethoxysilane (APTES) in toluene for 15 min at 100 °C, after which the surfaces 

were rinsed thoroughly with toluene.  

 

3.3.7. Sample Characterization 

 Sessile water contact angles were determined with 20 µL water droplets using a contact 

angle goniometer (model 100-00, Ramé-Hart Inc., Netcong, NJ). Film thicknesses were measured 

by spectroscopic ellipsometry (SE) at 70˚ over a wavelength range of ca. 200 – 1000 nm (M-

2000D, J. A. Woollam Co., Lincoln, NE). The substrates were modeled using the optical constants 

of silicon in the instrument software, and the native oxide and polyelectrolyte multilayers were 

modeled using the optical constants of SiO2, also from the instrument software. X-ray 

photoelectron spectroscopy (XPS)45 was performed with an SSX-100 ESCA spectrometer from 

Surface Science equipped with a hemispherical analyzer and a monochromatic Al Kα (1486.6 eV) 

source. Sample roughnesses were determined using a Veeco Dimension V AFM (Digital 

Instruments Inc., Santa Barbara, CA). ToF-SIMS was performed with a ToF-SIMS IV instrument 

(ION-TOF, Münster, Germany) with a gallium, Ga+, liquid metal ion source. 

 

3.4. Results and Discussion 

3.4.1. LBL Assembly of Films of PAH and PAA  

 The LBL deposition of PAH and PAA was explored with solutions of these 

polyelectrolytes at ca. pH 5.0 and 5.7, respectively.42, 46 These pH values were previously 

employed by Bruening et al.42 A series of assemblies was also prepared at ca. pH 8.0 (PAH 
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solution) and 8.7 (PAA solution). For this latter set of solutions I preserved the ca. 0.7 pH unit 

difference between the solutions used at ca. pH 5. At either set of pH values, PAH will exist in a 

substantially protonated form, and PAA will exist in a substantially deprotonated form. 

Accordingly, attractive interactions are expected between the cations in the PAH and the anions in 

the PAA.  

 The growth of PAH/PAA LBL films was monitored by spectroscopic ellipsometry (SE) 

for 48 different samples prepared at ca. pH 5 and 60 samples at ca. pH 8. However, more SE 

measurements were made at pH 5 because the sample thickness was measured after almost every 

deposition for almost all of the 48 samples, and a larger number of layers (22 vs. 12) was prepared 

at ca. pH 5 (see Figure 3.1). Interestingly, the layer-by-layer growth at the two solution pH values 

was very similar. A plot comparing the growth curves at pH 5 and pH 8 are given in Figure 3.2. 

To this best of my knowledge, this is the most extensive study reported to date of PAH/PAA film 

growth. 

 In agreement with previous reports42, exponential growth was observed for both the ca. pH 

5 (see Figure 3.1) and ca. pH 8 solutions (see Figure 3.2). The thinner (< 200 Å) LBL films were 

pristine (visually appeared as uncoated silicon wafers). On a few of the thicker (> 200 Å) films, 

defects that looked like water spots were observed. The roughnesses of the LBL films determined 

by AFM also increased with increasing film thickness, ranging from ca. 1 nm for the thinner films 

to ca. 6 nm for the thickest. These roughness measurements were made on at least two different 

spots chosen randomly on at least two different assemblies for every polyelectrolyte deposition. 

Clearly, the larger SE RSDs and increased number of visible defects in the thicker films are 

consistent with their greater AFM roughnesses. However, if a series of samples was made at the 

same time, with the same polyelectrolyte solutions, and also by the same laboratory worker (see   
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Figure 3.1. Thicknesses and roughnesses of PAH/PAA LBL assemblies prepared at pH 5 on silicon 

substrates. The numbers on the x-axis represent the total number of adsorbed layers (PAH or PAA). 

The ‘+’ and ‘–‘ symbols on the x-axis labels represent the nature of the final polyelectrolyte layer: 

cationic (+) or anionic (-). 
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Figure 3.2. Comparison of the thicknesses of PAH/PAA LBL assemblies prepared at pH 8 and pH 

5 on silicon substrates. The numbers on the x-axis represent the total number of adsorbed layers 

(PAH or PAA). The ‘+’ and ‘–‘ symbols on the x-axis labels represent the nature of the final 

polyelectrolyte layer: cationic (+) or anionic (-). 
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Experimental for description of deposition conditions), the RSDs of the resulting thicknesses 

would vary over a narrower range: from ca. 1% for the thinner films to ca. 5% for the thickest. 

That is, small changes in solution concentration, the age of the solution, and/or subtle user-to-user 

differences in sample preparation appear to affect film growth, where these changes become most 

apparent after many growth cycles. Nevertheless, these results indicate that, overall, reasonable 

reproducibility is obtained with these depositions, especially for the thinner films. 

 

3.4.2. Stability of LBL PAH/PAA Assemblies to XPS Analysis 

 The stability of LBL PAH/PAA assemblies to XPS/high vacuum analysis was tested. 

Initially, the compatibility of the sample to the vacuum environment was evaluated. After 26 h 

under high vacuum (ca. 10-8 Torr), the thickness of PAH/PAA films decreased by only 2 ± 1% 

That is, samples showed good stability in the vacuum, and this small decrease in thickness is 

attributed to the loss of water/film dehydration. A sample was then analyzed at the same spot thrice 

– the sample was not moved between analyses so the beam continually irradiated it at this point. 

Each analysis consisted of a survey scan and a set narrow scans. The resulting N 1s peak envelopes 

are shown in Figure 3.3. In all cases, they can be well fit by two 100% Gaussians constrained to 

have equal widths. The use of 100% Gaussians seemed appropriate in light of Crist’s suggestion 

to use 100:0 or 90:10 Gaussian:Lorentzian peaks to fit narrow scans of polymeric materials.47-48 

(No doubt, an underlying reason for Crist’s recommendation is the significant degree of disorder 

in most polymers.) Interestingly, the N 1s narrow scans did not stay constant during the scans; the 

peak at lower binding energy grew in size throughout the analyses. The O 1s/ N 1s ratios (based 

on narrow scans and corrected for atomic sensitivity factors, etc.) also changed, dropping from 

2.31 initially to 2.06 and then 1.97 after the second and third scans, respectively. This drop in  
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Figure 3.3. XPS N 1s narrow scans fitted with two 100% Gaussians of equal width from three 

identical analyses performed sequentially on the same spot on uncross-linked LBL samples. The 

peak positions of the ‘-NH3
+’ and ‘Amide’ signals were allowed to float in the fitting. The signals 

of these peaks were 402.8 eV and 401.1 eV, 402.9 eV and 401.1 eV, and 402.9 eV and 401.1 eV 

in Analyses 1, 2, and 3, respectively. 
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oxygen is consistent with amide bond formation. Accordingly, the higher binding energy peaks in 

Figure 3.3 are assigned to –NH3
+ moieties in the PAH, and the peaks at lower binding energy to 

amide nitrogen.49-53 The clear implication of these assignments is that the N 1s narrow scan of 

Figure 3.3a is not a true representation of a pristine PAH/PAA assembly. Rather, it appears to 

represents an assembly that has been perturbed to some degree by the measurement. SE further 

confirmed loss of material during XPS analysis. Indeed, after analysis, PAH/PAA films were 

found to be about 9 ± 2% thinner by spectroscopic ellipsometry. To the best of my knowledge, this 

is the first report of electron/X-ray induced damage/cross-linking of a PAH/PAA LBL assembly. 

Parenthetically, sample damage during XPS occurs more by photoelectrons than by X-rays.54 In 

addition, It has been previously shown that sample damage to organic monolayers on silicon during 

XPS with a monochromatic Al Kα source is low.55 

 

3.4.3. Thermal Cross-Linking of LBL Films of PAH and PAA 

 It has previously been shown that LBL films of PAH and PAA will thermally condense to 

form amide bonds with elimination of water:42  

 

(1) RNH3
+ + R’COO-  R-NH-CO-R’ + H2O 

 

 It would also be expected that cross-linked PAH/PAA assemblies would be more stable 

than uncross-linked assemblies. To explore this reaction, an experiment was undertaken on ca. 40 

nm PAH/PAA assemblies prepared at ca. pH 5 in a star-type experimental design56 (see Table 3.1) 

where three cure temperatures (150, 200, and 250 °C) and three cure times (1, 2, and 3 h) were  
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  Thickness (Å) XPS O 1s/N1s Ratio 

Temperature 

(°C) 

Time 

(h) 

Before Cross-

linking 

After Cross-

linking Before After 

150 2 223.79 170.35 2.04 1.81 

200 1 - - 1.89 1.90 

200 2 389.34 335.41 1.89 1.68 

200 2 428.48 381.81 1.87 1.68 

200 2 374.88 318.36 1.93 1.68 

200 3 213.16 173.92 2.08 1.46 

250 2 146.56 115.91 2.10 1.29 

 

Table 3.1. Initial and final ellipsometric thicknesses and XPS O 1s/N 1s ratios for PAH/PAA LBL 

films before and after thermal treatment.  Times and temperatures were chosen to conform to a 

star-shaped experimental design. Three replicates were performed in the center of the design (at 

200 °C and 2 h). The average O1s/N 1s ratio before cross-linking was 1.97, and the standard 

deviation and relative standard deviation for this set of data were 0.10 and 5.00%, respectively. 
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considered. To the best of our knowledge, this is the widest/most complete range of temperatures 

and times considered for this reaction. 

 Figure 3.4 shows representative XPS N 1s narrow scans of the uncross-linked film (Figure 

3.4a), and films heated to 150, 200, or 250 °C for 2 h (Figures 3.4b-d). The narrow scan of the 

uncross-linked film in Figure 3.4a agrees well with the corresponding spectrum in Figure 3.3a, 

despite the fact that it was taken at a different resolution setting on the instrument. However, the 

other three narrow scans in Figure 3.4 differ substantially from Figure 3.4a (or Figure 3.3a). In 

these narrow scans, the amount of signal at lower binding energy, which was attributed to amide 

nitrogen, increases steadily with increasing temperature. This result is consistent with the expected, 

thermally driven amidation of the films. After treatment at 250 °C for 2 h this process appears to 

be essentially complete. 

As shown in Table 3.1, the O 1s/ N 1s ratios for the films follow the amidation expected 

from the N 1s narrow scans in Figure 3.4. That is, the film treated at 250 °C has the lowest O 1s/N 

1s ratio of those studied in the experimental design, again suggesting the greatest degree of 

amidation at the highest cure temperature. Table 3.1 also shows that, in all cases, there is a decrease 

in film thickness after the thermal treatments, which is again consistent with the amidation 

predicted herein. Two other results of this XPS analysis are noteworthy. First, the N 1s/ C 1s ratios 

in the films did not change after cross-linking, indicating that nitrogen is not lost from the films 

either during analysis or during thermal treatments. Second, no Si 2p signal is discernable in the 

spectra, which suggests that (i) signals from the substrate, e.g., O 1s photoelectrons, are attenuated 

to the degree that they do not contribute to the analysis, and (ii) that the films are quite uniform, 

i.e., they contain very few pinholes or thin spots. Because of the significant amount of cross-linking 
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Figure 3.4. XPS N 1s narrow scans fitted with two 100% Gaussians of equal width for (a) an 

uncross-linked PAH/PAA LBL assembly, and (b, c, and d) PAH/PAA LBL assemblies cross-

linked for 2 h at 150 °C, 200 °C, and 250 °C, respectively.  The Gaussian at higher binding energy 

is assigned to ammonium (-NH3
+), and the Gaussian at lower binding energy to amide, -NH-C(O)-, 

nitrogen. The peak positions of the ‘-NH3
+’ and ‘Amide’ signals were allowed to float in the fitting. 

The signals of these peaks were (a) 401.2 and 399.3, (b) 400.8 and 399.2, (c) 401.4 and 399.6, and 

(d) 402.4 and 399.5. These spectra were reference to the C 1s peak, which is why their peak 

positions are lower than those in Figure 3.3, which were not referenced. 
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suggested at 250 °C, all of the cross-linked assemblies described in the remainder of this chapter 

were heated to this temperature for at least 2 h (see Table 3.2). 

 

3.4.4. LBL Film Stability in Solvents and at Low and High pH 

 Stable thin films are important in many applications, e.g., in chromatography and for 

hydrophobic coatings.57-59 The stability of uncross-linked PAH/PAA LBL assemblies (final 

thickness ca. 70 Å – 80 Å) was first evaluated by sonicating them in water for 20 min, THF for 15 

min, and ethanol for 20 min. These assemblies were completely stable under these conditions, as 

indicated by constant ellipsometric thicknesses (see Figure 3.5). Uncross-linked and cross-linked 

assemblies were then exposed to aqueous buffers under acidic (pH 1.68, 25 min) and basic (pH 

10, 20 min; and pH 13, 20 min) conditions. In the low pH buffer, more than 73% of uncross-linked 

thin film is removed from the substrate, while the cross-linked assembly remains intact. Under 

elevated pH conditions (10 and 13), the uncross-linked films are almost entirely removed (less 

than 17% of it remains) and about half (~48%) of the cross-linked film remains. In these 

experiments, the same cross-linked film was used – it was first immersed in the low pH buffer and 

then in the high pH buffers (see Figure 3.5). In summary, cross-linking does not appear to be 

necessary for the assemblies to be stable in water and organic solvents, but it makes a significant 

difference at low and high pH. Under alkaline conditions, the observed instability may be due, at 

least in part, to dissolution of the underlying native SiO2 layer as a black discoloration was 

observed on the sample. To the best of my knowledge, this is the first report of the stability testing 

of PAH/PAA assemblies in a series of solvents and at different pH values.  
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  Thickness (Å) 

Temperature (°C) Time (h) Before Cross-linking After Cross-linking 

250 2 158.10 114.31 

250 2 220.55 166.93 

250 3 209.59 163.65 

250 3 225.92 168.70 

250 3 205.81 156.08 

250 3 183.01 140.98 

250 3 108.57 84.98 

250 3 255.61 200.39 

250 3 267.70 214.00 

250 3 108.41 92.44 

250 3 150.18 123.16 

250 2.6 66.54 28.93 

250 2.6 66.29 29.61 

250 3 97.10 43.32 

 

Table 3.2. Ellipsometric thicknesses of LBL assemblies before and after thermal cross-linking at 

250° C for at least for 2 h.  
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Figure 3.5. Stability of uncross-linked (triangles) and cross-linked (circles) LBL assemblies before 

and after sonication in water for 20 min, THF for 15 min, and ethanol for 20 min, and after 

exposure to aqueous buffers at pH 1.68, 10, and 13. 
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3.4.5. Thiol Termination of PAH-Terminated PAH/PAA LBL Assemblies 

 PAH-terminated LBL assemblies ought to possess unreacted amine groups at their 

surfaces, i.e., this should definitely be the case for uncross-linked assemblies, but even cross-linked 

assemblies should possess some free amine groups. Traut’s reagent (2-iminothiolane) is a well-

known, cyclic reagent that is frequently used in bioconjugate chemistry. It works through a ring 

opening mechanism to convert amine groups into thiol (-SH) moieties. The interest in –SH groups 

comes from the many facile reactions they undergo in thiol-ene chemistry.25-26, 29 Here the reaction 

between Traut’s reagent and PAH-terminated LBL assemblies was studied via XPS and SE as a 

function of the solution pH (5 or 8), reaction temperature (0 or 20 °C), concentration of Traut’s 

reagent (0.001, 0.01, or 0.1 M), and degree of thermal cross-linking of the LBL assembly (cross-

linked or not). The exposure time to Traut’s reagent was 30 min in all cases. To the best of my 

knowledge, this is the first report of the direct reaction between Traut’s reagent and a PAA/PAH 

assembly. I am, however, aware of a somewhat related study in which LBL assemblies of silica 

nanoparticles and poly(ethyleneimine) (PEI) were deposited onto another LBL assembly of PEI 

and poly(sodium 4-styrenesulfonate) (PSS). The silica nanoparticles were then functionalized with 

an amino silane, which in turn was reacted with Traut’s reagent.60 

 It has previously been reported that Traut’s reagent reacts well with primary amines at pH 

7 – 9.43-44 However, this reaction may occur with the primary amines of PAH at even lower pH 

values because there may still be free amine groups on the polyelectrolyte below pH 7. That is, 

neighboring, positively charged amino groups on PAH are expected to interact with each other and 

perturb (lower) each other’s pKa values.61 Accordingly, the reaction between Traut’s reagent and 

PAH-terminated, uncross-linked PAH/PAA assemblies was attempted at pH 5. Figure 3.6 

indicates that some reaction does take place under these conditions, as measured by XPS S 2s/N 
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1s ratios and changes in film thickness, which correlate reasonably well. However, Figure 3.6 also 

shows that, as expected, the reactions run more efficiently at pH 8, even when the concentration 

of Traut’s reagent is quite low.  

 The reaction of Traut’s reagent with a cross-linked PAH-terminated PAH/PAA assembly 

was also studied (Figure 3.6). Here, some reaction again appears to take place, but to a lesser 

degree than for the uncross-linked films. These results are reasonable. Cross-linking is expected 

to decrease the number of amine groups available at the surfaces, and also decrease the ability of 

Traut’s reagent to diffuse within the PAH/PAA assemblies, i.e., these results constitute a chemical 

test that is consistent with the thermal cross-linking of PAH/PAA assemblies. Finally, Figure 3.6 

shows that the reaction between Traut’s reagent and the PAH-terminated surfaces is more efficient 

at higher concentrations of Traut’s reagent and with increased reaction temperature. Both of these 

results are consistent with the general theory of chemical reactivity. As a control, uncross-linked 

PAH/PAA samples were exposed to a solution without Traut’s reagent at pH 8 and 20 °C. Here, 

SE showed a negligible change in film thickness (0.36 Å), and XPS showed an insignificant S 

2s/N 1s ratio of 0.034. The best conditions found for the Traut’s reagent/PAH reaction are pH 8, 

20 °C, and 0.1 M, i.e., the highest pH, temperature, and concentration studied. 
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Figure 3.6. Thickness changes by ellipsometry (circles) and S 2s/N 1s ratios (triangles) for PAH-

terminated PAH/PAA assemblies treated with Traut’s reagent under different conditions, as 

indicated above. All LBL assemblies were uncross-linked, except as indicated above. All 

exposures were for 30 min. This XPS analysis was carried out only for the uncross-linked LBL 

assemblies reacted with 0.1 M Traut’s reagent, as shown in this figure.  
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3.4.6. Analysis and Prevention of –SH Group Oxidation 

 Thiol terminated assemblies prepared in the previous step were carried forward to the next 

step for thiol-ene chemistry. However, thiol groups are prone to oxidation so it is important to 

ensure that they have not oxidized prior to attempting thiol-ene chemistry.20, 25-26, 62 Understanding 

the stability of thiol groups would allow one to determine if thiol terminated assemblies could be 

stored or should be used immediately after they are prepared. This topic is considered important 

in bioconjugate chemistry,20 and there has been some mention of it with regards to surfaces. For 

example, Halliwell and Cass63 studied mercaptosilane-terminated surfaces.64 They noted the 

possibility of thiol oxidation, and cited a private communication that suggested that oxidation of –

SH groups on surfaces takes place rapidly above 115 °C, and that this process can be followed by 

XPS. Fierro and coworkers modified silica with a mercaptosilane and oxidized the resulting –SH 

groups using hydrogen peroxide.65 There do not appear to be very many of such studies in the 

literature, and I am not aware of any on thiol-terminated surfaces prepared with Traut’s reagent. I 

have also not been able to find any work related to the very important issue of the simple exposure 

of –SH terminated surfaces to the air under ambient conditions. 

To understand their stability against oxidation, PAH/PAA LBL assemblies treated with 

Traut’s reagent (at pH 8, 20 °C, and 0.1 M) were exposed to the air (and light) for 24 or 48 h and 

then analyzed by XPS. Changes in the S 2s/N 1s ratio were used to determine any loss of sulfur 

from the surfaces, which did occur and can be attributed to oxidation of thiol groups. Peak fitting 

of the S 2s envelope was used to assay any changes in the oxidation state of the remaining sulfur.  

The S 2s peak was used in this analysis instead of the more intense S 2p peak (i) to avoid any 

possible overlap of the S 2p (160-169 eV) region with the Si 2s (155-165 eV) signal from the 

substrate,66 and (ii) because it appears as a simpler, single peak, and not a spin-orbit doublet. Peak 

91 
 



www.manaraa.com

fitting was performed with three 80:20 Gaussian-Lorentzian peaks constrained to have equal 

widths (see Figure 3.7a-c). 

 After exposure to the air, both a loss of sulfur from the surfaces and a change in the 

chemical state of the remaining sulfur were observed. Based on decreasing S 2s/N 1s ratios, 15% 

of the sulfur was lost after the first exposure to air, and 36% after the second. To assay the chemical 

state of sulfur in/on the assemblies after these stability tests, the XPS S 2s signals from the surfaces 

were fit to three Gaussian-Lorentzians of equal width that were allowed to float in position (see 

Figure 3.7). The result of this exercise was three peaks at nearly the same binding energy (231.5 ± 

0.2 eV) that were assigned to oxidized sulfur, three peaks at nearly the same binding energy that 

were assigned to thiol (-SH) groups (227.6 ± 0.1 eV), and three peaks at nearly the same binding 

energy that were assigned to thiolate (-S-) groups (225.4 ± 0.4 eV).66 The standard deviation for 

the thiolate measurement is larger because of the uncertainty associated with the position of the 

very small thiolate signal in the 48 h sample in Figure 3.7C (the peak positions of the thiolate 

signals for Figures 3.7A and 3.5B were both 225.7 eV). Based on the peak areas from this fitting 

exercise, the fraction of thiolate groups on the surfaces decreased from 26% to 7% after 24 h of 

exposure to the laboratory environment and finally to 3% after 48 h of exposure. The fraction of 

thiol groups at the surfaces also decreased: from 55% to 43% after 24 h and finally to 36% after 

48 h of air exposure. Finally, the fraction of sulfur in an oxidized state increased from 19% initially 

to 50% after 24 h, and finally to 61% after 48 h. These results indicate that thiolate groups on 

PAA/PAH assemblies are more prone to oxidation than thiols, but that the thiols also oxidize to a 

significant extent. Both of these results are chemically reasonable. Thus, to avoid degradation of 

the reduced sulfur species (thiols and thiolates) at the surface, PAA/PAH assemblies treated with 

Traut’s reagent were used immediately after their preparation. 
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Figure 3.7. XPS S 2s narrow scans of thiol-terminated samples before and after 24 h and 48 h 

exposures to air and light. The S 2s peak is fitted with three 80:20 Gaussian:Lorentzian peaks of 

equal width. The peaks are designated as oxidized sulfur, thiol (-SH), or thiolate (-S-). 
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3.4.7. Rinsing of Thiol Terminated Assemblies with Acetic Acid 

 The –SH moiety is expected to be more stable in air than the –S- group. In addition, simple 

acid-base chemistry suggests that rinsing an –SH/–S- surface with an acid should convert the –S- 

groups into –SH moieties. Accordingly, PAH/PAA assemblies reacted with Traut’s reagent were 

rinsed with 0.1 M acetic acid for 30 s or 60 s, or immersed in the solution for 5 min (see Figure 

3.8). In all three cases, the fraction of thiolate groups at the surfaces dropped from 26% to 11-13%, 

and at the same time, the fraction of –SH groups increased from 55-57% to 66-67%. Concomitant 

with these reactions, the amount of oxidized sulfur on these surfaces also increased by a relatively 

small amount: from 17-19% to 20-23%. The XPS S 2s/N 1s ratios for these surfaces remained 

essentially constant, indicating that this process did not remove sulfur from the surfaces. 

Ultimately, because a polymeric reagent with multiple attachment points was reacted with the –

SH terminated surfaces, this added rinsing step was not employed before thiol-ene chemistry was 

performed. 

 

3.4.8. Thiol-Ene Attachment of 1,2-Polybutadiene to –SH Terminated Assemblies 

 Cross-linked LBL assemblies terminated with –SH groups from Traut’s reagent were 

reacted with different concentrations of 1,2-polybutadiene (PBd) in THF (12.5% – 25% w/v) for 

different amounts of time (~6 to ~11 h). These experiments were performed under irradiation of 

254 nm UV light in an inert (N2) atmosphere. The chemisorption of 1,2-PBd was confirmed by 

sessile water contact angles (20 µL water drops) and by SE film thickness measurements. Figure 

3.9 reveals that low exposures of UV light and/or low concentrations of PBd lead to rather thin 

films of adsorbed PBd (< 10 Å) with contact angles below 100°. Higher concentrations (~25%) of   
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Figure 3.8. XPS 2s narrow scans of –SH terminated assemblies before and after rinsing with dilute 

(0.1 M) acetic acid for varying amounts of time. 
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the polymer and/or longer exposure times typically produced 5 – 8 nm films with water contact 

angles above 100°. For comparison, an uncross-linked assembly terminated with –SH groups was 

also reacted (four days after its preparation) with a more concentrated solution of PBd in THF 

(50% w/v), see data points with the asterisk (*) in Figure 3.9. This reaction was carried out with 

254 nm UV light without a blanket of N2. Under these conditions, the thiol groups would be 

expected to oxidize readily. That is, the smaller number of attachment points that are expected here 

is consistent with the lower film thickness obtained. Nevertheless, attachment of PBd was 

successful on both cross-linked and uncross-linked films, whether in the air or not, presumably 

because the polymers are large and do not require a high density of attachment points. 

 

3.4.9. Thiol-ene Attachment of Perfluorodecanethiol to PBd Terminated 

Assemblies 

 The PBd-terminated assemblies described in the previous section underwent a second thiol-

ene reaction with neat perfluorordecanethiol (PDT). Reaction times were 4, 5, 8, and 12 h under 

254 nm UV light and a blanket of N2. Increases in film thickness of ~4 Å and water contact angles 

of ca. 120° were observed for the 4 – 8 h exposures on cross-linked and uncross-linked LBL 

assemblies terminated with PBd (see Figure 3.10). One cross-linked assembly showed much 

higher thickness of PDT layer ~ 12.75 Å. I am not completely comfortable removing this data 

point as an outlier because of the difficulty in controlling this chemistry. The high water contact 

angles obtained at these moderate UV exposures suggest that a large number of sites (carbon-

carbon double bonds) are available on adsorbed PBd for binding to a thiol. However, after 12 h of 

UV exposure, the film was catastrophically damaged. This suggests that the long exposures of the 

films to UV light could damage the films, decreasing their thicknesses and leaving them  
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Figure 3.9. Ellipsometric thicknesses and water contact angles after reaction of –SH terminated 

cross-linked with 1,2-polybutadiene (PBd) under different experimental conditions. The data 

points marked with ‘*’ are for –SH terminated uncross-linked assemblies reacted in air instead of 

inert atmosphere. 
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Figure 3.10. Ellipsometric thicknesses and water contact angles of PBd coated surfaces reacted 

with perfluorordecanethiol (PDT) under different experimental conditions.  
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hydrophilic. Obviously, these results also imply that some damage to the assemblies is always 

taking place. That is, the ability of PBd and PDT to impart hydrophobicity and stability (vide infra) 

appear to outweigh any film damage at lower exposures. 

 

3.4.10. Stability of Hydrophobic Assemblies, Including Prevention of Film 

Delamination by Substrate Silanization 

 As an additional stability test, the cross-linked, hydrophobic surfaces prepared with PBd 

and the perfluorordecanethiol described above were floated upside down on the surface of water 

for an extended period of time. After ca. seven days, the hydrophobic layers delaminated from 

their silicon substrates to produce free-standing films. I hypothesized that delamination was due 

to a lack of covalent bonds between the film and the substrate. Accordingly, a thin layer (1 – 2 nm) 

of a silane coupling agent,67 3-aminopropyltriethoxysilane (APTES),6 was deposited on the 

substrates. The LBL of PAA and PAH was then performed as before, followed by depositions of 

Traut’s reagent, PBd, and PDT. This tethered layer did not delaminate when floated upside down 

in water for 9 days in water. The same sample was then floated upside down in an acidic buffer 

(pH 1.68) for 30 days. No delamination occurred. Periodically, during this 30-day stability test, 

the surface was removed, rinsed, dried, and characterized by ellipsometry and wetting. Essentially 

no change in its thickness occurred during this time, although its water contact angle decreased 

modestly from 122° to 112°. However, the original contact angle could be recovered simply by 

drying the sample for 1 – 2 h at 70 °C. 

 The stabilities of complete hydrophobic assembles tethered through APTES were also 

tested by swabbing with ethanol and by the Scotch tape test. For the ethanol swabs, a sponge was 

dipped in ethanol and then gently rubbed across the surface of the film. In the Scotch tape test, a 
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piece of Scotch tape was pressed against the sample surface and then pulled off, where this test 

was performed multiple times on the same sample. In neither case was any change in water contact 

angle or ellipsometric thickness observed.  

 

3.4.11. Controlling Surface Wetting with Cross-Linking 

 Complete, hydrophobic molecular assemblies were prepared as described above, but only 

a fraction of them were cross-linked. The final water contact angles (20 μL drops) were ~120° for 

both surfaces. However, test water droplets were pinned very strongly to the uncross-linked 

surfaces, e.g., droplets did not move when the samples were turned upside down. On the other 

hand, the water droplets rolled off the cross-linked surfaces when they had a critical volume of 30 

μL and were at a tilt angle of 70°. For volumes less than 30 μL, no roll off was observed. These 

results suggest that there is an opportunity to control the pinning of water droplets through the 

extent of thermal cross-linking. 

 

3.5. Conclusion 

 A complex molecular assembly was prepared on a silicon surface using a combination of 

thermally cross-linked polyelectrolyte multilayers, bioconjugate chemistry with Traut’s reagent 

(2-iminothiolane), and thiol-ene chemistry with polybutadiene and fluorinated thioalkane. The 

LBL process was explored at two pH values. The assemblies were studied at each step of the 

surface modification process. For example, the growth rate of the LBL assemblies, as monitored 

by SE, became exponential for large number of layers, damage to the materials during XPS 

analysis was observed and studied, and the oxidation of thiol-terminated assemblies exposed to 

the air was carefully monitored by XPS. The final assemblies showed good hydrophobic properties 
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(WCA 120°), which could be tuned by the changing the extent of thermal cross-linking. 

Hydrophobic assemblies held to the substrate through a silane coupling agent showed good 

stability when immersed in an acidic (pH 1.68) solution for 30 days. They also resisted rubbing 

with ethanol swabs, and the Scotch tape test.  
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Chapter 4: Fluorine Plasma Treatment of Bare and Nitrilotris(methylene) 

triphosphonic acid (NP) Protected Aluminum. 

An XPS and ToF-SIMS Study. 

Note: Reprinted (adapted) with permission from {Madaan, N., Diwan, A., Linford, M. R., Fluorine 

Plasma Treatment of Bare and Nitrilotris(methylene)triphosphonic acid (NP) Protected 

Aluminum. The Journal of Surface and Interface Analysis 2014.} Copyright © 2014 John Wiley 

& Sons, Ltd. 

4.1. Abstract 

 Nitrilotris(methylene)triphosphonic acid (NP) is a technologically important molecule that 

has been used for years as a corrosion inhibitor and/or adhesion promoter on aluminum and other 

metal surfaces. However, to best of my knowledge, the detailed surface characterization of NP 

adsorbed on aluminum, or on any other surface, has not been reported. The primary motivation for 

this work originated as an effort to identify the cause of corrosion driven structural damage on NP 

coated, aluminum-based devices that were treated with a fluorinated plasma as a part of their 

fabrication process. Herein I report an X-ray photoelectron spectroscopy (XPS) and time-of-flight 

secondary ion mass spectrometry (ToF-SIMS) analysis of a series of untreated and NP-coated 

aluminum substrates that were exposed to the downstream products of a fluoroalkane + oxygen 

plasma for different amounts of time (from 0 s to 20 s), where NP forms a protective/passivation 

layer on aluminum. As indicated by P 2p, N 1s, Al 2p, O 1s, and F 1s narrow scans, even a 4 s 

plasma treatment significantly damages the NP protective layer and converts the native aluminum 

oxide into aluminum oxyfluoride. Heat treatment of the fluorine plasma-treated samples in the air 

substantially converts the aluminum oxyfluoride back to aluminum oxide, while similar heating 

under vacuum results in little change to the materials. A slow loss of fluorine from the samples 
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occurs over the course of weeks when they are stored in the air. A ToF-SIMS analysis reveals sets 

of signals that are consistent with no surface treatment, NP treatment, or fluorine plasma treatment. 

A principal components analysis of the negative ion ToF-SIMS spectra from the samples shows 

the expected differentiation of the samples. 

 

4.2. Introduction 

 Fluorinated aluminum and alumina find applications in optics, deep ultraviolet and vacuum 

ultraviolet mirrors, lithography, corrosion resistant coatings, microfabrication, electronics, and 

catalysis.1-4 Accordingly, the structures, properties, and behaviors of these materials have been 

studied as both nanoparticles and surface coatings. Interestingly, some of these applications require 

controlled fluorination, while in others the removal of fluorine is desirable. For example, 

fluorination of alumina has been reported to enhance its catalytic activity in isomerization, 

alkylation, and halogen exchange reactions.2 The combination of AlF3, LaF3, and Al2O3 has 

demonstrated ca. 98% UV reflectivity without manifesting UV induced damage, where such 

materials are of interest in 193 nm lithographic systems.5 Fluoride doping of alumina leads to a 

favorable lowering of its phase transition temperature to that of corundum.6 In electronics, 

aluminum oxyfluoride features created on Al-1% Si bond pads by exposure to a CF4 + O2 plasma 

show decreased device performance (faster corrosion) so the removal of fluorine in them is 

desirable.7-9 In another example, aluminum fluoride was formed on the walls of an aluminum 

plasma chamber.10 This layer needed to be regularly removed to ensure a reproducible plasma 

process. In this case, a SiCl4 + Cl2 plasma was run in the chamber to reactively etch the aluminum 

fluoride and form volatile SiF4 and AlCl3.11 Aluminum fluoride has high solubility in water, and 

this property has been exploited to form sharper aluminum features in photolithography; the 
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residual resist on the side walls of aluminum features has been removed by treating the surface 

with a fluorinated plasma followed by a water rinse.12 The creation of aluminum fluoride and/or 

aluminum oxyfluoride can be achieved by treatment with hydrofluoric acid,6 by passing 

fluorinated alkanes over alumina/aluminum at high temperature,13 or by exposure of 

aluminum/alumina to a fluorine-containing plasma, e.g., SF6, CF4 + O2, NF3, and fluoroalkanes.8, 

14 

 For monolayer and/or ultrathin film deposition on many metal oxides, organophosphonic 

acids are important alternatives to the well-studied organosilanes. Organophosphonic acid 

monolayers can be prepared on a variety of hydroxylated surfaces, including the oxides of Al, Zr, 

Cu, Fe, Si, Ti and ITO.15-20 In general, these monolayers are more stable than comparable silane 

monolayers at elevated pH. For example, Pujari and coworkers showed that monolayers of 

hexadecylphosphonic acid were chemically more robust in water, and at pH 3 and pH 11, than 

monolayers of octadecyltrichlorosilane on plasma activated CrN.21 It is also typically the case that 

organophosphonates are easier to handle than silanes. In comparison to alkoxy- or chlorosilanes, 

phosphonic acids do not produce a toxic byproduct upon hydrolysis, e.g., HCl, or require 

anhydrous conditions for deposition.22 Phosphonic acids adsorb strongly to the native aluminum 

oxide layer on aluminum substrates.23, 24 In this regard, nitrilotris(methylene)triphosphonic acid 

(NP) (see Figure 4.1) is an interesting molecule because it possess three phosphonate groups that 

bond to native alumina on aluminum to give a very thin corrosion protective layer for aluminum 

substrates.25-27 However, while NP has been used for many years for corrosion protection of 

aluminum oxide and in other applications of technological importance, I am unaware of any 

detailed surface analysis by X-ray photoelectron spectroscopy (XPS) and/or time-of-flight 

secondary ion mass spectrometry (ToF-SIMS) of NP adsorbed on a surface.  
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1Figure 4.1. Structure of nitrilotris(methylene)triphosphonic acid (NP). 
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  The primary motivation for this work originated from an observation that NP coated 

aluminum-based commercial devices when exposed to weak downstream fluoroalkane + oxygen 

plasma demonstrated initial improvement in their performance but later suffered corrosion driven 

structural damage while sitting in storage that rendered them useless. The immediate aim was to 

identify, understand, and if possible find a solution to this corrosion problem. Here I report an XPS 

and ToF-SIMS analysis of untreated and NP coated aluminum surfaces28 that were exposed for 

different amounts of time to the products of a fluoroalkane + oxygen plasma. As noted, NP adsorbs 

to native aluminum oxide through its phosphonate groups to form a corrosion inhibiting layer.25, 

29 XPS was of central importance in this work because (i) it is non-destructive in nature, (ii) its 

data interpretation is relatively straightforward, (iii) it gives quantitative compositions from the 

upper ca. 10 nm of materials, and (iv) it informs regarding the chemical environment (oxidation 

states) of elements vis-à-vis chemical shifts.30 XPS confirmed NP adsorption to the aluminum 

surfaces. It further showed that the fluorine plasma caused significant sample 

damage/modification. The hot/cold stage on the ToF-SIMS instrument allowed to demonstrate that 

fluorine removal does not take place from samples when they are heated under vacuum, while 

fluorine removal does take place readily in the air at 150-300 °C. A chemometric, principal 

components analysis (PCA)31-33 of the negative ion ToF-SIMS data differentiated the samples 

according to their expected chemistries. PCA is an appropriate statistical analysis tool for 

comparing series of SIMS spectra because of the high degree of correlation that exists between the 

signals within them. That is, while the spectra typically possess many peaks, their inherent 

dimensionality is often low.34 The effects of rinsing fluorine plasma-treated samples with ultrapure 

water, and the slow loss of fluorine that occurs from samples when they are stored in the air is also 

described.  
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4.3. Experimental 

4.3.1. Samples 

 Uncoated samples consisted of transparent glass substrates sputter coated with ca. 200 nm 

of aluminum with/without exposure to the downstream products of a CF4 + O2 plasma for 8 

seconds. These samples are designated ‘Al – 0 s’ and ‘Al – 8 s’, respectively. NP-coated samples 

consisted of the same ca. 200 nm of Al on glass that were treated with an aqueous solution of NP 

and then exposed to the CF4 + O2 plasma for 0, 4, 8, 12, 16, or 20 s. These samples are referred to 

as ‘NP – 0 s’, ‘NP – 4 s’, ‘NP – 8 s’, ‘NP – 12 s’, ‘NP – 16 s’, and ‘NP – 20 s’, respectively. 

 

4.3.2. X-ray Photoelectron Spectroscopy 

 An SSX-100 X-ray photoelectron spectrometer equipped with a monochromatic Al Kα 

source (1486.6 eV) was used for the XPS analyses. Accordingly, survey (broad) scans and narrow 

scans for phosphorus (P 2p), nitrogen (N 1s), aluminum (Al 2p), fluorine (F 1s), oxygen (O 1s), 

and carbon (C 1s) were collected with an 800 μm spot size at resolution 4. An electron flood gun 

for charge compensation was not used because a gold-coated holding clip acted as a conductive 

path between aluminum on the samples and a grounded XPS sample stage. The spectra were 

referenced to the Al 2p signal taken at 73.00 eV for metallic aluminum. A Shirley background35 

was removed from the spectra for the determination of peak areas of narrow scans. To compare 

samples, peak area ratios with respect to the Al 2p peak were used: P 2p/Al 2p, N 1s/Al 2p, F 1s/Al 

2p, O 1s/Al 2p, and C 1s/Al 2p. The area of the entire Al 2p signal envelope – from both the 

metallic and oxidized aluminum – was used to calculate these ratios. XPS was performed three 

times on the samples. The time gap between these analyses was approximately one week and the 
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samples were stored in the air in our laboratory between analyses. That is, the ‘Week 1’ analysis 

was performed two days after the samples were prepared. The ‘Week 2’ and ‘Week 3’ samples 

were then analyzed approximately two weeks and three weeks after the ‘Week 1’ analysis was 

performed. For each analysis, a different sample from the same batch of samples was used. 

 

4.3.3. Time-of-flight Secondary Ion Mass Spectrometry (ToF-SIMS) 

  ToF-SIMS was performed with an ION-TOF (Münster, Germany) ToF-SIMS IV system 

equipped with a 25 KeV 69Ga+ primary ion source and an in situ hot/cold stage. Although the films 

are on insulating glass substrates, no flood gun was necessary as the metallic layers were grounded 

through a top contact to the sample holder. The pulsed primary ion (target) current was typically 

ca. 0.36 pA. A short analysis time of 100 s and a large analysis area of 500 X 500 μm2 (ca. 1.5 X 

1011 primary ions/cm2) ensured that the analysis was performed within the static limit. The PCA 

analysis of the SIMS data, including its preprocessing (normalization and autoscaling), were 

performed as described previously.31 

 

4.4. Results and Discussion 

4.4.1. XPS of Surfaces Before and After NP Deposition and Before and After 

Fluorine Plasma Treatment 

 XPS revealed the elemental compositions (Figure 4.2) and chemical states (Figure 4.3) of 

the elements in the uncoated aluminum and NP-coated aluminum samples before and after fluorine 

plasma treatment. The structure of the NP ligand, which contains three phosphonate groups that 

should interact strongly with the Al(III) in aluminum oxide, is given in Figure 4.1. Figure 4.2a 

shows the XPS P/Al ratio for the samples. Interestingly, a small amount of phosphorus appears to 
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be present as a contaminant in all of the surfaces, and this P is partially removed from the uncoated 

Al sample when it is treated with the fluorine plasma, cf. the Al-0s and Al-8s results. The source 

of this phosphorus contamination is unknown. As expected, the NP-coated sample (NP-0s) shows 

by far the largest P/Al ratio. This ratio then drops precipitously when the samples are exposed to 

the F plasma; even 4 s of plasma treatment is sufficient to reduce the P/Al ratio to about that of the 

Al-8s sample, and a longer exposure to this plasma appears to result in the continued, low level 

loss of phosphorus from the surfaces. The NP molecule also contains nitrogen. The nitrogen 

content of the untreated aluminum samples (Al-0s) is very low, but it becomes substantial after 

NP treatment. The theoretical P/N ratio for the NP molecule in Figure 4.1 is 3, and the P/N XPS 

area ratio of the NP-0s sample is 2.8, which is reasonably close to this value. Somewhat 

unexpectedly, fluorine plasma treatment also introduces a considerable amount of nitrogen into 

the samples, i.e., consider the Al-8s and NP-4s – NP-20s samples. The presence of nitrogen on the 

samples after F plasma treatment suggests the presence of air in the chamber. Comparison of the 

NP-4s – NP-20s samples indicates a slow removal of nitrogen from the materials with increased F 

plasma exposure, i.e., the plasma appears to both introduce nitrogen contamination onto the 

surfaces and then gradually remove it. In summary, these results point to the expected adsorption 

of NP to the Al surface, its removal by the F plasma, and the introduction of nitrogen to the surfaces 

during plasma treatment. 

Fluorine plasma treatment also leads to substantial changes in the substrate. Figure 4.2b 

shows the XPS F/Al, O/Al, and C/Al ratios for the samples. The F/Al and O/Al ratios behave in 

opposing ways. For example, the untreated Al (Al-0s) and NP-coated (NP-0s) samples show high 

O/Al and very low F/Al ratios. However, after treatment with the F plasma, the F/Al ratios become 

very large and the O/Al ratios drop substantially. These results suggest loss of oxygen in the  
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Figure 4.2. (a) P/Al and N/Al, and (b) O/Al, F/Al, and C/Al XPS pear area ratios of bare aluminum 

(Al-0s), bare aluminum after 8 s of fluorine plasma treatment (Al-8s), aluminum coated with NP 

(NP-0s), and NP-coated aluminum after exposure to a fluorine plasma for 4s – 20 s before (solid 

symbols) and after (open synbols) rinsing with water.  
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substrate and its replacement by fluorine. The F/Al and O/Al ratios in Figure 4.2b further indicate 

that most of the change in the samples has taken place after 4s of plasma treatment, and that longer 

exposures to the plasma result in a continued, slow replacement of surface oxygen. Carbon is 

present on all the samples, and while as expected, the XPS C/Al ratio is highest for the NP-0s 

sample, comparable amounts of carbon are found on all of the samples. This comes as little surprise 

because (i) NP deposits as a monolayer and it is a rather small adsorbate, and (ii) aluminum oxide 

is expected to readily contaminate with hydrocarbon because of its high free energy. Finally, there 

appears to be a slow increase in the carbon content of the surfaces with fluorine plasma treatment. 

This result is consistent with the fact that the ‘F plasma’ contains carbon – it is actually ‘CF4 + 

O2’.  

 The confirmation of and change in elemental compositions suggested in Figure 4.2 are 

complemented by the corresponding P 2p, N 1s, Al 2p, O 1s, and F 1s narrow scans in Figure 4.3. 

For example, Figure 4.3a indicates that there are two types of phosphorus in the samples. The first 

type, Type I, appears at lower binding energy (133.1 – 133.5 eV), and is present on the surfaces 

that had not been coated with NP or that had been treated with both NP and the fluorine plasma. 

The second type, Type II, appears at higher binding energy (134.7– 135.3 eV), and corresponds to 

the rather oxidized form of phosphorus that is in the NP molecule. That is, both carbon and oxygen 

are more electronegative than phosphorus so if the electrons in the NP phosphorus are assigned to 

the atoms around it, per the typical rules used to assign oxidation states,30 phosphorus will be found 

in a high (+5) oxidation state. As was suggested in Figure 4.2, these results are consistent with the 

removal of NP from the NP-0s surface during fluorine plasma treatment. In summary, there is 

some phosphorus contamination on the samples initially, the amount of phosphorus on the samples 

then increases significantly when NP adsorbs to them, the phosphorus in NP has a different  
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Figure 4.3. (a) P 2p, (b) N 1s, (c) Al 2p, (d) O 1s, and (e) F 1s XPS narrow scans of bare aluminum 

(Al-0s), bare aluminum after 8 s of fluorine plasma treatment (Al-8s), aluminum coated with NP 

(NP-0s), and NP-coated aluminum after exposure to a fluorine plasma for 4s – 20 s before (solid 

lines) and after (dashed lines) rinsing with water.  
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chemical state from the phosphorus contamination, and phosphorus in the +5 oxidation from NP 

is not found on the samples after fluorine plasma treatment. Note also that the large signal from 

the Type II (NP) phosphorus probably masks any smaller signal from Type I phosphorus that may 

still be present on the samples. 

 The N 1s narrow scans in Figure 4.3b tell a similar story to the P 2p scans in Figure 4.3a, 

except that the unmodified Al samples (Al-0s) show very little nitrogen. The small signal that is 

present in these narrow scans at ca. 408 eV is consistent with nitrogen in a high oxidation state, 

i.e., probably nitrate (NO3
-).36 For the NP-coated sample (NP-0s), the nitrogen appears to be in two 

oxidation states: one at ca. 401 eV and the other at ca. 403.5 eV. Consistent with literature 

precedent, I assign the lower energy peak to unprotonated nitrogen in the NP molecule (see Figure 

4.1), and the higher energy peak to the same, but protonated, nitrogen.37, 38 The higher binding 

energy for the protonated nitrogen is consistent with it generally being more difficult to remove an 

electron from a positively charged entity than a neutral one. The ratio of the signals from the 

protonated and unprotonated nitrogen atoms suggests that about one-third of the nitrogen in 

adsorbed NP is protonated. As previously noted, plasma treatment also appears to introduce 

nitrogen into the samples. That is, with or without prior adsorption of NP, plasma treated samples 

show a strong N 1s signal at ca. 403.5 eV, where most of the nitrogen in the plasma treated samples 

appears to be in this chemical state. The fact that this peak appears on the Al-8s sample, and that 

its intensity is nearly as great as those from the NP-4s – NP-20s samples, suggests that the plasma 

also removes the NP nitrogen. 

 The Al 2p narrow scans in Figure 4.3c consistently show two peaks. The lower energy peak 

in all the spectra at 73.0 eV is assigned to metallic aluminum, Al(0). Metallic aluminum typically 

shows a high binding energy tail by XPS,39, 40 but this tail could not be discerned here because of 
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the presence of neighboring peaks at higher binding energy in the spectra, of which two types were 

observed. The first is present in the two samples that had not ‘seen’ the F plasma: the Al-0s and 

NP-0s samples. These two spectra show a peak at ca. 75.7 eV, which is known in the literature to 

correspond to the oxidized aluminum in aluminum oxide.8, 12, 13, 29, 41 The similarity of the spectra 

of these two samples implies that deposition of NP does not substantially perturb the aluminum 

substrate. The second type of signal, which has also been observed previously, is present in 

samples that have been treated with the F plasma. Here, the oxide peak is shifted to even higher 

binding energy (ca. 77.7 eV).8, 12, 13, 41 This result is consistent with an element more 

electronegative than oxygen binding to aluminum, and/or to the oxygen binding to aluminum. The 

only element more electronegative than oxygen is fluorine, so these narrow scans suggest that the 

fluorine plasma treatment of aluminum produces an aluminum fluoride/ oxyfluoride species, 

which is consistent with the removal of oxygen from the samples and the concomitant gain in 

fluorine revealed in Figure 4.2. Note also that the Al(0) peaks in the spectra of fluorine plasma-

treated samples are responsible for a smaller fraction of the total area of the Al peak envelopes 

than the Al(0) peaks in the Al-0s and NP-0s spectra. This result indicates that the F plasma oxidizes 

the aluminum beneath the original oxide. The O 1s narrow scans in Figure 4.3d tell a similar story. 

The O 1s signals from the Al-0s and NP-0s samples are very similar, and the O 1s signals from the 

plasma treated samples are also chemically similar, but shifted to higher binding energy. This shift 

again suggests the formation of oxygen-fluorine bonds. Interestingly, there is a shoulder on the 

NP-4s O 1s narrow scan that suggests both aluminum oxide and aluminum oxyfluoride in the 

materials. With additional plasma treatment, i.e., at 8 s of plasma treatment or beyond, this lower 

energy shoulder disappears. These results are consistent with the gradual decrease in oxygen and 

increase in fluorine with increased plasma treatment suggested in Figure 4.2b. Finally, the F 1s 
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narrow scans in Figure 4.3e suggest that the trace fluorine initially present on the Al-0s and NP-0s 

samples, which is probably F-, is superseded by a different form of fluorine in the plasma-treated 

surfaces at higher binding energy, probably oxyfluoride. 

 

4.4.2. Effects of Rinsing 

 In order to better understand the durability of any modifications made to the surfaces by 

plasma treatment, three of the samples (Al-8s, NP-4s, and NP-8s) were rinsed with high purity 

water for 2 min and then analyzed by XPS. The XPS N/Al, P/Al, F/Al, O/Al, and C/Al ratios of 

these samples are shown in Figure 4.2. In general, the same results were obtained with all three 

surfaces. That is, this rinse: (i) very substantially reduced the amount of nitrogen on the surfaces, 

(ii) moderately increased the P/Al ratio, (iii) very substantially reduced the amount of fluorine on 

the surfaces, (iv) moderately raised the amount of oxygen on the surfaces, and (v) decreased 

somewhat the amount of carbon. The decrease in the F/Al ratio and concomitant increase in surface 

oxygen suggests some degree of reversibility to the effects of the fluorine plasma. The only result 

that was unexpected here was the apparent increase in phosphorus with rinsing. Although the exact 

cause for the increase in the P/Al ratio is unknown, there is a possibility that the phosphorus exists 

at the surface as an insoluble species so that as water removes other soluble material around it, the 

remaining phosphorus is concentrated at the surfaces. In summary, fluorine plasma treatment 

creates a number of surface species that can be removed by rinsing.12  

 More detailed information about the changes in surface chemistry after rinsing were 

obtained from the P 2p, N 1s, Al 2p, and O 1s narrow scans of the materials (see dotted lines in 

Figure 4.3). Figure 4.3a indicates that the chemical state of the phosphorus at the surfaces does not 

change substantially before and after rinsing. This result would be consistent with the water having 
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little or no effect on this species. However, the other three elements do change their chemical states 

after rinsing. For example, rinsing, especially in the case of the NP-4s and NP-8s samples, appears 

to remove the more oxidized form(s) of nitrogen from the samples. Once again in agreement to 

the argument that rinsing somewhat reverses the effects of the fluorine plasma, Figures 5.3c and 

5.3d show shifts in the Al 2p and O 1s narrow scans to lower binding energy after rinsing, which 

is in the direction of the untreated samples. Figure 4.3c also shows that the Al(0) peak increases in 

intensity relative to the oxide peak after rinsing, indicating that rinsing removes aluminum 

oxyfluoride species from the surfaces. 

 

4.4.3. Heating of Plasma-Treated Samples in the Air and Under Vacuum 

 Gas phase processes are often preferred over wet processes in semiconductor 

manufacturing. Accordingly, to explore ‘dry’ methods for removing fluorine from plasma-treated 

aluminum surfaces, two samples (Al-8s and NP-8s) were heated in the air at 300 °C for 5 h. Figure 

4.4 shows the XPS survey and Al 2p narrow scans for these samples before and after this thermal 

treatment. It is of significance that: the fluorine is almost entirely removed from these surfaces, 

the XPS F/O ratios of these surfaces reverse (moderately large prior to heating, very small after), 

the oxyfluoride peaks in the Al 2p narrow scans shift to lower binding energy (consistent with the 

loss of F from the surfaces), and the Al(0) peak decreases in intensity relative to the oxide peak, 

suggesting a deeper oxide layer on the surfaces.  

To understand and confirm that air (probably water in the air) is necessary for the removal 

of fluorine from plasma treated surfaces, ToF-SIMS was performed on the Al-8s sample before 

and after heating at 300 °C for 5 h under vacuum (10-8 mbar) and for 5 h in the air (see Figure 4.5). 

Static SIMS is extremely sensitive to fluorine, and the SIMS spectrum of the Al-8s sample is  
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Figure 4.4. Survey and Al 2p narrow scans of bare aluminum and NP-coated aluminum samples 

treated with fluorine plasma for 8 s followed by baking for 5 hours at 300 °C in air. 

  

121 
 



www.manaraa.com

 

Figure 4.5. ToF-SIMS spectra of the ‘Al-8s’ sample without any heat treatment (top), after heating 

at 300 °C in vacuum (middle), and after heating at 300 °C in the air for 5 h (bottom). The ‘300 °C, 

5 h, Vacuum’ sample was immediately analyzed without breaking vacuum. 
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initially dominated by the F- peak, with small O- and OH- signals also present. The spectrum is 

still dominated by the F- signal after the sample is heated under vacuum for 5 h, although the O- 

signal becomes more intense relative to the OH- signal after this treatment. At least part of this 

change may be due to desorption of water from the sample surface. The SIMS spectrum of the 

sample heated in the air for 5 h is profoundly different from the previous two spectra. Consistent 

with the results in Figure 4.4, the F- signal is almost entirely gone and strong O- and OH- peaks are 

present. 

 

4.4.4. Evolution of the Samples with Aging 

 As previously mentioned, the uncoated and NP-coated samples were analyzed three times 

by XPS. The time gap between each analysis was ca. one week. Between analyses the samples 

were stored in the laboratory in covered containers, but they were otherwise exposed to the 

laboratory air, and no effort was made to shield them from the room lights. Figure 4.6 shows the 

XPS P/Al, N/Al, F/Al, O/Al, and C/Al ratios for the samples initially (Week 1) and after two weeks 

of storage (Week 2 and Week 3). For the various samples, there is little or no change in the P/Al, 

N/Al, and C/Al ratios. However, there are generally noticeable changes in the F/Al and O/Al ratios. 

That is, in general, the F/Al ratio decreases and the O/Al ratio increases with sample storage. These 

results suggest slow hydrolysis of fluorine from these samples with time that is consistent with the 

loss of fluorine from the surfaces that were heated in the air (vide supra). 
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Figure 4.6. Evolution of XPS P/Al, N/Al, F/Al, O/Al, and C/Al ratios of uncoated and plasma 

treated samples over three weeks.  
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4.4.5. Comments on the ToF-SIMS Data, Including a PCA Analysis 

 The surfaces discussed herein were also analyzed by time-of-flight secondary ion mass 

spectrometry (ToF-SIMS). From each negative ion spectrum, the same 21 peaks were identified 

and individually integrated: O-, OH-, F-, CN-, F2
-, N2OH-, NO2

-, PNH2
-, NO3

-, PO2
-, AlF2

-, PO3
-, 

H3O2AlF-, AlF4
-, H6OAl2F2

-, H2O5FAl-, H4O6AlF-, H2O3AlF4
-, H4O7AlF-, H6O3F3Al2

-, and 

H3OAl2F6
- (see Table 4.1). It would be reasonable to expect that these peaks could be divided into 

three groups corresponding to the surfaces (i) prior to NP treatment (O-, OH-, N2OH-, NO2
-, and 

NO3
-), (ii) after NP treatment, but before plasma treatment (CN-, PNH2

-, PO2
-, PO3

-), and (iii) after 

fluorine plasma treatment (F-, F2
-, AlF2

-, H3O2AlF-, AlF4
-, H6OAl2F2

-, H2O5FAl-, H4O6AlF-, 

H2O3AlF4
-, H4O7AlF-, H6O3F3Al2

-, and H3OAl2F6
-). The series of HxOyAlzFa

- type peaks observed 

here is a confirmation of the aluminum oxyfluoride species predicted above. The PO2
- and PO3

- 

peaks observed here are typically observed in the SIMS of phosphates, e.g., DNA,42, 43 and the CN- 

peak is typical of organic nitrogen-containing compounds.32, 43 To better understand the 

relationships between the samples, a principal components analysis (PCA) of the data was 

performed. PCA is a multivariate analysis technique that allows large sets of data, e.g., spectra or 

spectral regions, to be compared in a rather straightforward way. PCA analyses on SIMS data sets 

have been performed in Linford’s group, which I joined as a graduate student in 2008. They/I have 

very consistently found that PCA results agree with the expected chemical differences between the 

samples.31-33, 44, 45  

The scores and loadings plots generated in this analysis are presented in Figures 4.7-4.12. 

The first principal component (PC) accounted for 70.0% of the variation in the data (see Figure 

4.7 and 4.8). It divided the data into two groups – the samples that had not undergone fluorine 

plasma treatment and those that had. In confirmation of the expected chemistry of these surface,   
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No. Center Mass (u) Assignment  

1 15.995 O- O- 

2 17.003 OH- OH- 

3 18.999 F- F- 

4 26.003 CN- CN- 

5 38.001 F_2- F2
- 

6 45.000 N_2OH- N2OH- 

7 45.995 NO_2- NO2
- 

8 46.971 PNH_2- PNH2
- 

9 61.994 NO_3- NO3
- 

10 62.970 PO_2- PO2
- 

11 64.973 AlF_2- AlF2
- 

12 78.967 PO_3- PO3
- 

13 80.973 H_3O_2AlF- H3O2AlF- 

14 102.977 AlF_4- AlF4
- 

15 113.994 H_6OAl_2F_2- H6OAl2F2
- 
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16 127.986 H_2O_5FAl- H2O5FAl- 

17 145.976 H_4O_6AlF- H4O6AlF- 

18 153.003 H_2O_3AlF_4- H2O3AlF4
- 

19 161.976 H_4O_7AlF- H4O7AlF- 

20 164.943 H_6O_3F_3Al_2- H6O3F3Al2- 

21 186.939 H_3OAl_2F_6- H3OAl2F6
- 

 

Table 4.1. Peaks from the negative ion spectra selected for a principal components analysis (PCA) 

of the ToF-SIMS data. 
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Figure 4.7. The PCA loadings for PC 1, which captured the variation due to the fluorine plasma. 

The variables are labeled with molecular formulae of the ion observed in the mass spectrum. Note 

that, for example, ‘PO_3-‘should be read as ‘PO3
-‘. Refer to Table 4.1 for greater clarification. 

Please note that these are tentative assignments that may be incorrect for variables 13 - 21, which 

are for the fluorinated peaks.  
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Figure 4.8. The PCA scores for PC 1, which captured the variation in the samples induced by the 

fluorine plasma. The sample dots are enclosed in color coded boxes for the same type of samples. 

Two sets of samples from the same batch were analyzed with a one week gap between their 

analyses.  The sample names used here have four parts separated by hyphens: (1) NP and Al for 

NP coated and bare aluminum, respectively, (2) a number (0, 4. 8, 12, 16, and 20) corresponds to 

the plasma exposure time in seconds, (3) a second number: ‘1’ or ‘2’ indicates samples analyzed 

the first or a week after, respectively, and (4) a third number: ‘1’ or ‘2’ that refer to samples 

numbers for the same type of samples that were analyzed at the same time. 
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the plot of the loadings on PC1 showed that the spectra of the fluorine plasma treated samples were 

richer in all the ions listed in group (iii) (see previous paragraph), and that the spectra from the 

untreated samples were richer in all the ions from groups (i) and (ii) above. These results are 

consistent with damage/removal of the NP molecule by the plasma and replacement of oxygen by 

fluorine. In the plot of the scores on PC1 there is also a hint of a separation between the spectra 

corresponding to the samples analyzed after their creation and those analyzed a week later. PC2 

(see Figure 4.9 and 4.10) accounted for 17.8% of the variation in the data. It cleanly separated the 

samples into three groups. The untreated, bare aluminum samples, which had negative scores on 

PC2, the NP-coated aluminum samples, which had positive scores on PC2, and all the samples that 

had been treated with the fluorine plasma, which showed scores of essentially zero. As expected, 

the only peaks of significance in the loadings plot for PC2 were from groups (i) and (ii) above. 

That is, all the peaks in group (i), except oxygen, which showed a very small loading, had negative 

loadings and corresponded to the untreated samples. In contrast, all the peaks in group (ii) had 

positive loadings and corresponded to the NP-treated samples. Again, these results are in very 

good agreement with the expected chemistries of the surfaces, e.g., the NO2
- and NO3

- ions are 

obtained from the untreated samples, which is consistent with the oxidized nitrogen signal at ca. 

408 eV from the Al-0s sample (see Figure 4.3b). For PC3, see Figure 4.11 and 4.12, which 

accounted for 9.6% of the variation in the data, the loading of the F- signal was negative and all 

the remaining peaks had positive loadings. The spectra with the most negative scores on this PC 

were samples treated with the plasma and analyzed soon after their preparation, while those 

showing more positive scores on PC3 were either not treated with the plasma or analyzed at a later 

time. In a PCA analysis, higher PCs generally account for less and less of the variation in the data, 

and any correlation of the sample chemistry to the PCA results becomes more and more tenuous.  
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Figure 4.9. The PCA loadings and scores for PC 2, which captured the variation in the NP layer. 

The variables are labeled with the molecular formulae of the ion observed in the mass spectrum. 

Note, for example, that ‘PO_3-‘should be read as ‘PO3
-‘. Refer to Table 4.1 for additional 

clarification. Please note that these are tentative assignments that may be incorrect for variables 

13 - 21, which are for the fluorinated peaks.  
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Figure 4.10. The PCA loadings and scores for PC 2, which captured the variation due to the NP 

layer. The sample dots are enclosed in color-coded boxes for the same type of samples. Two sets 

of samples from the same batch were analyzed at one week gap. The sample names used here have 

four parts separated by hyphens: (1) NP and Al for NP coated and bare aluminum, respectively, 

(2) a number (0, 4. 8, 12, 16, and 20) corresponds to the plasma exposure time in seconds, (3) a 

second number: ‘1’ or ‘2’ indicates samples analyzed the first or a week after, respectively, and 

(4) a third number: ‘1’ or ‘2’ that refer to samples numbers for the same type of samples that were 

analyzed at the same time.  
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Figure 4.11. The PCA loadings and scores for PC 3, which captured the variation among the 

samples induced by the fluorine plasma. The variables are labeled with the molecular formulae of 

the ion observed in the mass spectrum. Note, for example, that ‘PO_3-‘ should be read as ‘PO3
-‘. 

Refer to Table 4.1 for additional clarification. Please note that these are tentative assignments that 

may be incorrect for variables 13 - 21, which are for the fluorinated peaks.  
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Figure 4.12. The PCA loadings and scores for PC 3, which captured the variation among the 

samples induced by the fluorine plasma. The sample dots are enclosed in color coded boxes for 

same type of samples. Two sets of samples from the same batch were analyzed at one week gap.   

The sample names used here have four parts separated by hyphens: (1) NP and Al for NP coated 

and bare aluminum, respectively, (2) a number (0, 4. 8, 12, 16, and 20) corresponds to the plasma 

exposure time in seconds, (3) a second number: ‘1’ or ‘2’ indicates samples analyzed the first or a 

week after, respectively, and (4) a third number: ‘1’ or ‘2’ that refer to samples numbers for the 

same type of samples that were analyzed at the same time.  
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This is the case here – while the results for PC3 agree with the sample chemistry in a fairly general 

way, the groupings in the scores plot are not as tight as for the first two PCs. 

 Finally, it was noted that the NH4
+ peak was observed in all the positive ion spectra from 

all the samples. However, the fact that no sign of this species is indicated in the N 1s narrow scan 

from the Al-0s surface (it should appear at roughly the same location as the protonated amine 

signal in the NP-0s narrow scan in Figure 4.3b) suggests that its concentration is quite low. Perhaps 

this result can be explained by noting that (i) SIMS has a strong matrix effect, and (ii) silicon 

surfaces are often exposed to NH3-containing cleaning solutions. 

 

4.5. Conclusions  

 NP is a widely used corrosion inhibitor for aluminum that has not been studied to any 

significant degree by XPS or SIMS. These techniques confirm the deposition of NP on 

alumina/aluminum and show the expected elements and molecular fragments. NP is substantially 

damaged by a fluorine plasma. In addition, a fluorine plasma significantly changes the aluminum 

substrate beneath NP, replacing the oxygen in its native oxide layer with fluorine and/or oxidizing 

it. ToF-SIMS of fluorine plasma treated NP/aluminum samples reveals a series of HxOyAlzFa
- type 

peaks that are consistent with the formation of an aluminum oxyfluoride. All of this is useful 

information because both fluorine plasmas and aluminum are commonly used in semiconductor 

processing, and NP is widely believed to protect aluminum. The replacement of oxygen with 

fluorine appears to be fairly reversible. Rinsing in water substantially removes fluorine from the 

surface of aluminum oxyfluoride. Fluorine is also slowly replaced by oxygen if an aluminum 

oxyfluoride material is exposed to the air. This process is accelerated by heating, but strongly 

inhibited if the heating is performed under vacuum. This study shows that formation of 

135 
 



www.manaraa.com

hygroscopic aluminum oxyfluoride species and damage to the NP layer during fluorine plasma 

treatment of aluminum based devices renders them vulnerable to corrosion while sitting in storage.  
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Chapter 5: Metal-Assisted Secondary Ion Mass Spectrometry  

(MetA-SIMS) with Bismuth 

Note: The work presented in this chapter has been submitted to journal of Surface and Interface 

Analysis as Madaan, N., Linford, M.R., Metal-Assited Secondary Ion Mass Spectrometry (MetA-

SIMS) with Bismuth. 

5.1. Abstract 

 Deposition of thin layers of high Z metals on a sample before its analysis by time-of-flight 

secondary ion mass spectrometry (ToF-SIMS) leads to significant fragment specific improvements 

in signal intensities in the mass spectrum. This simple sample preparation technique is known as 

metal-assisted secondary ion mass spectrometry (MetA-SIMS). Correlating the correct metal layer 

thickness with the signal enhancement serves as the primary motivation for this work, where I 

have demonstrated that the most commonly employed QCM method can be a source of error. 

Accordingly, I introduce interference enhanced spectroscopic ellipsometry as a solution to 

determining film thicknesses. In addition, I chose a new high Z metal (bismuth) and a relatively 

high molecular weight polymer: polydiallyldimethylammonium chloride, PDADMAC, (MW 

~100,000 – 200,000) to test some of the claims put forward in this work. A signal enhancement of 

10 - 1600 was observed for the characteristic positive ions from a polymer with 6 - 10 nm thick 

bismuth layers. I also demonstrated that MetA-SIMS performed best in the absence of charge 

compensation using flood gun for a PDADMAC layer spin coated on a thick insulating substrate. 

 

 

 

140 
 



www.manaraa.com

5.2. Introduction 

 Time of flight secondary ion mass spectrometry (ToF-SIMS) is a powerful analytical tool 

that exposes surfaces to short pulses of very fast moving primary ions (PI) that upon impact sputter 

both neutral and ionized atomic and molecular species. The ionized fraction of this sputtered 

material is analyzed by a time-of-flight mass spectrometer to yield mass spectra from which 

chemical information can be derived. ToF-SIMS has remarkable surface sensitivity, providing 

information about the upper few nanometers of sample surfaces. For some species its limit of 

detection is in the parts per million or perhaps even the parts per billion range. Nevertheless, the 

technique is limited because: (1) the ionized fraction of the sputtered material is generally quite 

low – most of the sputtered material is neutral and not detected, and (2) its ionization efficiency is 

often strongly influenced by the chemical environment of a sample, which means that the signal 

intensity cannot, in general, be directly correlated with the concentration of an analyte of interest. 

That is, SIMS has a matrix effect.1 In order to improve the performance of ToF-SIMS, a significant 

amount of work has gone in to overcoming these obstacles. Approaches along these lines have 

included the development of polyatomic and cluster PI sources,2-4 application of low molecular 

weight matrices mixed with analyte, i.e., matrix enhanced SIMS (ME-SIMS),5, 6 preparation of 

thin layers of analyte on heavy metal substrates such as Au or Ag,7 and metal assisted secondary 

ion mass spectrometry (MetA-SIMS). MetA-SIMS is a sample preparation technique that was 

introduced by Delcorte et al.8 In MetA-SIMS, a thin (~2-10 nm) layer of a noble metal (Au or Ag) 

is deposited on a sample surface before ToF-SIMS analysis. Metal nanoparticles/clusters may also 

be used. Significant enhancements in SIMS signals, up to a few orders of magnitude, have been 

reported for a variety of materials.  MetA-SIMS is the focus of the present work. 
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 Among the above mentioned methods applied to improve ToF-SIMS ionization 

efficiencies, the application of polyatomic and cluster primary ions (PI) has by far surpassed any 

other method,2-4 including MetA-SIMS.1, 9 Nevertheless, MetA-SIMS offers some unique benefits 

that motivated me to carry out this work. For example, MetA-SIMS renders static-SIMS more 

quantitative by reducing its matrix effect.10, 11 In other studies, successful SIMS analysis of 

insulating samples was achieved by MetA-SIMS without the need for an electron flood gun.8, 12 

This is a useful feature of the technique because irradiation of a sample with a flood gun may cause 

chemical damage, which can lead to an erroneous SIMS analysis.13 MetA-SIMS is also a useful 

tool for understanding the complex collision cascade mechanism that takes place in a sample upon 

impact by a PI.14, 15  

 A great deal of sophisticated MetA-SIMS work has been done that has included both 

experimental studies as well as molecular dynamics simulations.2, 8, 11, 14, 16-20 Based on a review 

of the literature, MetA-SIMS has been performed after deposition of thin layers (0 – 40 nm) of 

metals that include Au, Ag, and Pt. Monatomic, polyatomic, and cluster PI beams have been used 

in these studies. Samples have consisted of flat substrates spin coated with a variety of polymers 

(polystyrene,8 polycarbonate,15 polyethylene,16 polyethyleneimine9), dyes (carbocyanine12), 

pharmaceuticals (risperidone7, 21), and large molecules (Irganox 1010,8 triacontane22). Although a 

well-defined theoretical model is still lacking to fully explain the mechanism behind secondary 

ion yield enhancements in MetA-SIMS, multiple hypotheses, based in experimental studies, have 

been proposed.18 For example, enhancement in SIMS signal intensities has only been observed 

when MetA-SIMS is performed with a monatomic PI (Ga+, In+, Ne+, Ar+, Kr+, Xe+, or Bi+). When 

a polyatomic PI is used, e.g., Bin
+, SF6

+, or C60
+, a decrease or negligible enhancement in the SIMS 

signal intensity is observed.1, 9, 12, 17, 18, 22-24 These results are consistent with the increased stopping 
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of a monatomic PI by thin metal films or clusters, with deposition of the PI energy in the near 

surface region resulting in increased sputter yield and enhanced SIMS signal. In contrast, when 

C60
+ impinges upon a gold nanoparticle, its energy is partially reflected, and partially applied to 

break bonds in the Au particles. The remaining energy is insufficient to produce an enhanced SIMS 

signal.18 Similar effects appear to be at play for other moderately sized polyatomic primary ions 

such as Bin
+ and SF6

+.24 On the other hand, a molecular dynamics simulation showed that a Au400
+ 

polyatomic primary ion would enhance the SIMS signal by MetA-SIMS.19  

 It has consistently been observed in MetA-SIMS that Au outperforms Ag, which is 

attributed to the higher atomic mass of Au imparting better stopping power to a PI and leading to 

better dissipation of the PI energy at a surface.8, 12, 22 However, this effect may not be so simple. 

In one study, Pt did not show any enhancement in MetA-SIMS.8 This result suggests that in 

addition to its atomic mass, the nature of the metal affects the MetA-SIMS enhancement. The 

signal enhancement is also fragment specific and varies with the thickness of the metal overlayer. 

To further complicate the situation, the time gap between metal deposition and SIMS analysis and 

storage temperature can affect the degree of signal enhancement in MetA-SIMS.12, 25, 26 All of this 

suggests slow reorganization of the metal-organic interface. In addition to the increased stopping 

power of metal layers, diffusion of polymeric species over the top of metallic nanoclusters, 

modification of the ionization efficiency of the sample that is in contact with the metal, and 

improved conductivity of the sample (making SIMS analysis of insulating samples possible 

without the need for a flood gun), are other factors that contribute to SIMS signal enhancement by 

MetA-SIMS.  

 Typically, in the MetA-SIMS work reported to date, Au or Ag metal layers have been 

deposited on a sample surface by thermal evaporation. Metal deposition by sputtering, as reported 
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in a few initial studies,12, 21 was abandoned to prevent chemical damage to surfaces by energetic 

projectiles. Metal layer thicknesses have generally been monitored with a quartz crystal 

microbalance (QCM) under the assumption that the sticking coefficients of sample surfaces and 

the quartz crystal will be the same, i.e., both unity,24 which is rarely the case. Indeed, it has been 

proposed that the sticking coefficient of some sample surfaces can be far below unity.14 Of course, 

if metal film thicknesses are not accurately known, it becomes difficult to draw reliable 

conclusions regarding their effects on ion yield. The fact that suitable thickness values for metal 

overlayers reported in the literature range from 4 – 24 nm1, 9, 17, 18, 22, 27 suggests that this may be 

the case for at least some of this work. Delcorte et al.14, 15 clearly understood the importance of 

obtaining accurate metal overlayer thicknesses in MetA-SIMS. In their work they used Tougaard 

peak shape analysis of X-ray photoelectron spectroscopy (XPS) signals to determine the amount 

of gold they had deposited,28, 29 and scanning electron microscopy (SEM) to understand its 

morphology. When they compared their XPS results to the predictions from QCM they found that 

the sticking coefficients for gold on two polymeric surfaces were ca. 0.5. 

 In this work I carried out MetA-SIMS on a thin film of a polyelectrolyte 

(polydiallyldimethylammonium chloride, PDADMAC, see Figure 5.1) using a high Z metal that, 

to the best of my knowledge, has not been previously explored – bismuth (Bi). Bismuth should be 

of fundamental interest here because, as noted above, a different high Z element, Pt, failed to give 

a signal enhancement in previous MetA-SIMS experiments, and bismuth clusters are currently 

employed in many SIMS experiments as PI. 

 For the other important aspect of this work, I used interference-enhanced spectroscopic 

ellipsometry (SE)30 to measure the thicknesses of evaporated Bi films and thereby to calibrate our 

QCM for Bi deposition. Practically speaking, interference enhancement is just SE on a thick, 
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transparent substrate, e.g., SE on a silicon wafer with a relatively thick oxide layer (hundreds on 

nanometers thick). The fundamental reason for performing interference enhancement is to 

introduce an interference pattern into the ψ and Δ parameters obtained in SE, which ultimately has 

the effect of breaking the correlation that often exists between film optical constants, thicknesses, 

and other film parameters. This approach is particularly useful for absorbing thin films like the 

metal layers used in MetA-SIMS. Other than a substrate with a thick oxide (transparent layer), 

which is not hard to obtain (I used silicon wafers with ca. 510 nm of thermal oxide on them), the 

only other requirement for interference enhancement is to perform the SE measurement at more 

than one angle of incidence. This is not a difficult requirement for a technique that can make a 

measurement in perhaps a few tens of seconds and is performed in the air. 

 

 

2Figure 5.1. Structure of polydiallyldimethylammonium chloride (PDADMAC). 
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5.3. Experimental 

5.3.1. Materials 

Silicon wafers, (100) crystallographic orientation, with ca. 510 ± 2 nm of silicon oxide were 

purchased from WRS Materials, San Jose, CA. Poly(diallyldimethylammonium chloride) 

(PDADMAC) (MW ~ 100,000 – 200,000, 20% w/v in water) was purchased from Sigma-Aldrich, 

St. Louis, MO, USA. Stabilized tetrahydrofuran (THF) was obtained from Mallinckrodt, 

Phillipsburg, NJ. High resistivity (18 MΩ-cm) water used for making solutions and rinsing was 

obtained from a Milli-Q water system (Millipore, Billerica, MA). 

 

5.3.2. Sample Preparation 

Shards of silicon (ca. 1” x 1”) were sonicated in methanol, rinsed in methanol, sonicated in 

water, rinsed in water, and then dried under a stream of N2. These clean Si(100) substrates were 

then spin coated using a 1% w/v aqueous solution of PDADMAC at 8000 rpm for 30 s to deposit 

ca. 45 nm thick PDADMAC layers (determined by SE). Thin films of bismuth (2, 4, 6, 10, and 20 

nm) were deposited on both PDADMAC-coated and bare Si(100) substrates in a thermal 

evaporator. This deposition procedure consisted of watching the output of the QCM in the chamber 

until the desired film thickness was reached. The shutter separating the Bi source from the samples 

was then immediately closed. To obtain the best possible results with our chamber, the boat 

containing the Bi and the samples to be coated should be oriented/positioned in the chamber in the 

same way in each run. 
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5.3.3. Time-of-flight Secondary Ion Mass Spectrometry (ToF-SIMS) 

ToF-SIMS was performed with a ToF-SIMS IV instrument (ION-TOF, Münster, Germany) 

equipped with a gallium liquid metal ion source. A 25 KeV Ga+ ion beam (static primary ion 

current ~1.2 nA, pulse length 20.3 ns) was rastered over a 500 X 500 μm2 area at a resolution of 

128 X 128 (16384 pixels) with 1 pulse per pixel (pixel width 3.91 μm). For each MetA-SIMS mass 

spectrum, 140 scans (229.38 s) were collected that account for a total primary ion dose of 1.388 X 

1011 ions/cm2, which is well below the static limit of ~1013. No flood gun was used for any of the 

MetA-SIMS analyses. To study charge compensation of Bi-coated samples, 25 scans (40.96 s, a 

primary ion dose of 2.5 X 1010 ions/cm2) were collected for each mass spectrum with or without 

the flood gun operating at a filament current of 2.4 A. Twenty such mass spectra were collected in 

succession on the same spot to study the evolution of the signal peak intensities with the number 

of scans, which is equivalent to exposing the sample to a total primary ion dose of 5.0 X 1011 

ions/cm2, and is still below the static limit.  

 

5.3.4. Spectroscopic Ellipsometry 

Variable angle spectroscopic ellipsometry (VASE) was performed using an M-2000D 

ellipsometer at four angles of incidence (45˚, 55˚, 65˚, and 75˚) for a beam of light composed of 

wavelengths from ca. 200 – 1000 nm (see section 1.2.3). The resulting data were analyzed with 

the WVASE32 (Version: 3.812) software (J. A. Woollam Co., Lincoln, NE). Refer to section 1.2.3 

for detailed description of working of spectroscopic ellipsometry (SE). 
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5.4. Results and Discussion 

This section is divided into two parts. The first deals with the calibration of the QCM in the 

deposition chamber by interference enhanced SE. The second describes the MetA-SIMS signal 

enhancements provided by Bi. 

 

5.4.1. Determination of Bi Film Thicknesses on the Silicon Substrate and on 

PDADMAC Layers 

Bi film thicknesses were conveniently estimated using a quartz crystal microbalance 

(QCM) in the deposition system. Because the response of a QCM depends on its position in a 

chamber, it must be calibrated. Accordingly, 20 and 40 nm films of Bi (by QCM) were deposited 

onto bare silicon and PDADMAC-coated silicon. The resulting film thicknesses were then 

measured by SE.  

SE is a model-based technique, and the models shown in Figure 5.2 were used to 

characterize the substrate and then determine the thicknesses of Bi and PDADMAC layers on it. 

All SE measurements were performed in interference enhancement mode, and Figure 5.2a shows 

the model for the thick-oxide substrate used for this purpose. This model consists of a thick, opaque 

silicon base layer, an Si/SiO2 interface layer,30 and a thick oxide layer. The optical constants in the 

instrument software were used for all of these layers, so the only unknown in this model was the 

thickness of the thick oxide layer. In a typical example, this oxide thickness was found in a ‘normal 

fit’ to be 512.6 nm with a reasonable MSE of 6.8.  

Figure 5.2b gives the model for the PDADMAC thin film on the thick oxide substrate. This 

film was prepared by spin coating a 1% w/v solution of aqueous PDADMAC for 30 s at 8000 rpm  

148 
 



www.manaraa.com

 

 

Figure 5.2. SE models used to determine the optical properties/thicknesses of (a) the thick oxide 

silicon/silica substrate, (b) a PDADMAC layer on the thick oxide silicon/silica substrate, (c) a Bi 

layer on the thick oxide silicon/silica substrate, and (d) a Bi layer on a PDADMAC film on the 

thick oxide silicon/silica substrate. 
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onto a silicon support. In this model, all of the parameters for the clean, thick oxide substrate were 

fixed to the values found by SE for the clean surface. The PDADMAC layer was then described 

using a Cauchy model, which describes the index of refraction, n(λ), of a transparent dielectric as 

a truncated, inverse power series governed by the values of three constants:  A, B, and C (see 

Equation 2). 

 

𝑛𝑛(𝜆𝜆) = 𝐴𝐴 + 𝐵𝐵
𝜆𝜆2

+ 𝐶𝐶
𝜆𝜆3

                                                (2) 

 

In this fit, the constant C did not affect the MSE significantly and so it was set to zero. In a 

representative example, with A and B in Equation 2 allowed to vary, the thickness for the 

PDADMAC layer was determined to be 45.8 nm (MSE 7.1).  

 While a thin film of Bi (Figure 5.2c) has more unknowns to model (index of refraction, 

n(λ), thickness, and extinction coefficient k(λ)) compared to only n(λ) and thickness for the 

PDADMAC films, the interference enhancement of the thick oxide substrate allows all of these 

parameters to be determined with careful modeling. The general approach I used to tackle this 

problem was as follows. The film thickness was first set to the value found by QCM, and the 

optical constants of Bi were approximated as those of another metal (silver, taken from the 

instrument software). With the thickness of the film fixed, a point-by-point fit of the optical 

constants was performed, and in a second step, the optical constants and film thickness were 

allowed to vary. Fits run in this manner showed good MSE values. Thin films of Bi on PDADMAC 

on silicon (Figure 5.2d) were modeled sequentially using the same procedures outlined herein, i.e., 

the thickness and optical constants of an underlying layer would be determined and fixed before 

the thickness and optical constants of the next layer would be determined. 
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 Measuring the optical constants and thicknesses of very thin films can be a challenge for 

SE. For example, the parameters of the Cauchy model and the thicknesses it predicts are often 

correlated for films thinner than 10 nm. When the Bi films were thinner than 10 nm (by SE), the 

MSE values for the SE models we used for it (Figure 5.2) rose substantially. These results may 

also suggest that the model for the films is incomplete. However, a ‘better’ model would almost 

certainly require the addition of additional model parameters, which creates its own issues vis-à-

vis the believability of the results. Accordingly, I felt that the calibration of the QCM in the 

deposition chamber over a range of thicknesses where the ellipsometry was giving reasonable 

results would be important to measure/predict the true thicknesses of our thinner Bi films. Table 

5.1 shows the results of these efforts to calibrate our QCM. When either 20 nm or 40 nm of Bi (by 

QCM) was deposited onto the silicon substrate or onto PDADMAC, the result was essentially the 

same: SE registered a Bi film thickness that was half as great as the thickness found by QCM. To 

check the accuracy of SE, different thicknesses of bismuth (10 – 100 nm based on the QCM 

readings) were deposited onto a piece of a silicon wafer on which a line had been drawn using a 

Sharpie marker. The rinsing of these bismuth coated silicon wafers with copious amounts of THF 

led to the dissolution/removal of the line drawn with the Sharpie marker and removal of the 

bismuth in that area, which created a step whose height could be measured by atomic force 

microscopy (AFM). Although, unlike ellipsometry AFM did not show exactly the half values of 

thicknesses of the bismuth layers, the measured values were close to it (see Table 5.1). The 

discrepancy between AFM and SE readings could be attributed to some extent to the mechanical 

nature of the shutter in the evaporator, the position of the sample in the thermal evaporator, the 

orientation of the tungsten boat with respect to the sample in the evaporator, and the crude rinsing 

procedure employed. 
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Sample 
QCM Thickness 

of Bi 

AFM Thickness of 

Bi 

SE Thickness 

of Bi 

SE 

MSE 

Si/SiO2 40 nm - 20.84 nm 7.09 

Si/SiO2 20nm - 10.92 nm 12.26 

Si/SiO2/PDADMAC 40 nm - 19.89 nm 8.97 

Si/SiO2/PDADMAC 20 nm - 10.27 nm 12.41 

Si/SiO2 50 nm 30 .0nm   

Si/SiO2 50 nm 22.3 nm   

Si/SiO2 10 nm 7.2 nm   

Si/SiO2 100 nm 44.0nm   

 

Table 5.1. Thicknesses of bismuth layer measured by quartz crystal microbalance and 

spectroscopic ellipsometry. 
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Uniqueness testing is commonly performed in SE to check for correlation between 

parameters in a model. The SE models corresponding to 10 – 20 nm (by SE) of Bi on bare and 

PDADMAC-coated Si(100) were evaluated in this way (see Figures 5.2b and d, and 5.3). Here, 

the thickness of the Bi film was fixed at a series of values that ranged around its optimal value, 

and the remaining parameters in the model were allowed to vary. The MSE for each fit was then 

plotted as a function of the (fixed) thickness of the Bi film. The general upward, parabolic shapes 

of the resulting curves confirmed the uniquenesses of the ellipsometric models, i.e., that the model 

parameters were uncorrelated. 

 

5.4.2. MetA-SIMS Signal Enhancements Provided by Bi 

ToF-SIMS was performed on bare and PDADMAC-coated Si(100) shards that were 

covered with 0, 2, 4, 6, 10, or 20 nm (by SE) of evaporated Bi. To better compare and understand 

these spectra, a careful, peak-by-peak, comparison of the ToF-SIMS spectra of the surfaces coated 

with 0 and 6 nm of Bi was undertaken. From this analysis, 24 peaks were identified that appeared 

to (i) be attributable to the PDADMAC layer, and (ii) show MetA-SIMS enhancement in the Bi-

coated PDADMAC surface. The masses and tentative assignments of these signals are given in 

Table 5.2. Figure 5.4 shows the ToF-SIMS spectra from two of these fragments (m/z ~ 333 

(C23H29N2
+) and m/z ~ 279 (C18H35N2

+)) that were obtained under different conditions. In 

particular, Figure 5.4a shows that intense signals were obtained from a Si(100)/PDADMAC/Bi(6 

nm) sample. Figure 5.4b then shows that much smaller signals are produced from a 

Si(100)/PDADMAC sample (no Bi). Finally, Figure 5.4c – d shows the same spectral regions from 

bare Si(100) and Si(100)/Bi(6 nm) samples. The m/z ~ 333 and m/z ~ 279 signals in question here 

do not appear to be present in these spectra. 
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Figure 5.3. Results of SE uniqueness testing on thick oxide silicon/silica substrates coated with Bi 

or PDADMAC and Bi. 
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  MetA-SIMS Enhancement 

m/z Chemical Formula 4 nm Bi 6 nm Bi 10 nm Bi 

42.059 C2H4N+ 4.31 6.31 7.52 

58.096 C3H8N+ 11.66 19.14 17.23 

68.094 C4H4N+ 6.30 9.89 12.80 

82.1 C5H8N+ 7.87 12.19 10.93 

84.116 C5H10N+ 13.91 23.95 44.83 

94.105 C6H8N+ 7.32 11.82 8.85 

96.121 C6H10N+ 10.29 17.40 13.11 

98.138 C6H12N+ 12.06 18.55 14.28 

110.14 C7H12N+ 13.35 23.04 24.17 

112.157 C7H14N+ 16.25 27.70 21.57 

126.173 C8H16N+ 47.14 84.87 202.52 

127.175 C8H17N+ 43.98 78.75 181.39 

128.189 C8H18N+ 36.33 59.71 100.23 

140.2 C9H18N+ 22.99 39.02 33.18 

152.201 C10H18N+ 16.43 26.79 13.63 

154.215 C10H20N+ 24.76 44.59 10.76 

162.167 C11H16N+ 38.56 67.03 91.09 

166.22 C11H20N+ 26.20 41.31 29.09 

168.239 C11H22N+ 33.73 56.13 62.62 

169.241 C11H23N+ 37.91 63.71 68.76 
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184.232 C12H26N+ 53.48 86.56 75.64 

230.146 C17H12N+ 192.16 346.25 1218.85 

279.357 C18H35N2
+ 37.76 52.61 12.92 

333.333 C23H29N2
+ 335.73 688.85 1539.00 

 

Table 5.2. Ions from PDADMAC that showed significant signal enhancement in Bi MetA-SIMS 

with possible molecular assignments. 
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Figure 5.4. ToF-SIMS signals assigned to C23H29N2
+ (m/z 333) (left column) and C18H35N2

+ (m/z 

279) (right column) for (a) Si(100) spin coated with PDADMAC and 6 nm of Bi, (b) Si(100) spin 

coated with PDADMAC, (c) bare Si(100), and (d) Si(100) coated with 6 nm of Bi. 
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The MetA-SIMS enhancement factors for the 24 signals identified in Table 2 were 

calculated by dividing the areas of the signals obtained from the Bi-coated PDADMAC samples 

by the corresponding signals obtained from the uncoated PDADMAC samples. Figure 5.5a shows 

the MetA-SIMS enhancement factors for 19 out of the 24 signals identified in Table 1. A maximum 

signal enhancement of ca. 10 - 100 takes place for these fragments for 6 – 10 nm of Bi. Figure 5.5b 

shows the enhancement factors of the remaining 5 fragments as a function of Bi overlayer 

thickness. For two of these fragments, enhancement factors of over 1000 were observed. 

In the analysis of the PDADMAC fragments in Table 5.2, it was noticed that the heavier 

m/z fragments seemed to show higher MetA-SIMS enhancements. The plot of MetA-SIMS 

enhancement vs. fragment mass in Figure 5.5c confirms this general trend. This result is significant 

because higher m/z fragments tend to be more characteristic of materials. Finally, while this work 

is focused on the signal enhancements that can be obtained via Bi MetA-SIMS, it was noted that 

PDADMAC samples coated with 2 nm of Bi actually showed small decreases in their signal 

intensities. This may be because 2 nm of Bi has poor stopping power and thus only serves to inhibit 

ion formation/release from surfaces. 

The relatively thick PDADMAC layer (~45 nm) spin-coated onto Si(100) should be 

insulating, and all of the silicon substrates used in this study had a thick (ca. 510 nm) layer of oxide 

on them. Accordingly, charge compensation was expected to be necessary for a good analysis of 

these PDADMAC films. Figure 5.6a shows the results from analyzing this film when no charge 

compensation was employed. Here, 20 series of mass spectra were collected from a single spot on 

the sample. The total number of ions that irradiated the surface during these analyses was ca. 5 X 

1011/cm2, which should put this overall analysis well within the static limit. Charging appears to 

be taking place on these samples, as there is a steady decrease in the intensities of the various ions  
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Figure 5.5. (a) MetA-SIMS enhancement factors in the range of ca. 10 – 100 for various ions from 

a PDADMAC sample coated with different thicknesses of bismuth, (b) MetA-SIMS enhancement 

factors in the range of ca. 100 – 1600 for various ions from a PDADMAC sample coated with 

different thicknesses of bismuth, and (c) Plot of MetA-SIMS enhancement factors vs. ion m/z 

value. 
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as a function of sample irradiance. Figure 5.6b shows the same analysis with charge compensation 

(an electron flood gun). While the signals are by no means constant in every case, they are more 

consistent than those that were obtained without charge compensation, and most of the signals do 

not change by more than ca. ± 20% over the course of the analysis. Figure 5.6c shows the evolution 

of signals that were obtained from PDADMAC coated with 6 nm of Bi without charge 

compensation. The most consistent signals are obtained here. Finally, Figure 5.6d shows the 

analysis of the same PDADMAC/Bi(6 nm) sample with charge compensation. While the signals 

are certainly more consistent here than in Figure 5.6b, they are not as good as those obtained in 

Figure 5.6c. Thus, charge compensation is (i) strongly advised for insulating PDADMAC samples, 

although it is not quite as effective as might be hoped, and (ii) discouraged for Bi-coated 

PDADMAC samples because the Bi on them already appears to be conductive so any additional 

charge compensation only appears to perturb the samples. This general approach of coating 

insulators with Bi may prove useful for the analysis of other insulators. 
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Figure 5.6. The evolution of positive ion mode ToF-SIMS signals (see Table 1) with time for 

PDADMAC polymer while the flood gun is (a) off, (b) on. The evolution of positive ion mode 

meta-SIMS signals (see Table 1) with time for PDADMAC polymer coated with 6 nm of bismuth 

layer while the flood gun is (c) off, (d) on. 
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Chapter 6: Conclusions and Future Work 
 

6.1. Conclusions 

 In my PhD research work I focused on the construction and characterization of complex 

molecular structures with desired chemical and mechanical properties on planar gold, silicon 

dioxide, and aluminum surfaces. The molecular constructs were assembled using a combination 

of different surface chemical reactions in a sequential manner. Each chemical modification step 

was monitored/optimized with the help of various surface analytical techniques – X-ray 

photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), 

ellipsometry, contact angle goniometry, and atomic force microscopy. I demonstrated successful 

functionalization of gold surfaces by dithiol self-assembled monolayers (SAMs) followed by a 

photochemical thiol-ene reaction with 1,2-polybutadiene (PBd). The PBd terminated gold surfaces 

could further be modified with thiolated chemical moieties e.g. DNA-SH and a 

perfluoroalkanethiol. The final assemblies showed higher chemical stability when exposed to air 

and light compared to the more commonly employed alkylthiol SAMs. Silicon dioxide surfaces 

were coated with a tunable hydrophobic thin film that was prepared by application of thermally 

cross-linked polyelectrolyte multilayers, bioconjugate chemistry, and thiol-ene chemistry. The 

hydrophobic film demonstrated excellent chemical and mechanical stability. The 

hydrophilic/hydrophobic contrast of the final assembly could be tuned in a facile manner by 

varying the extent of heat treatment during cross-linking of the polyelectrolyte layers and did not 

require tedious patterning steps. In the part of my work that focused on surface characterization, a 

sophisticated XPS and ToF-SIMS study was carried out to understand the effects of a downstream 

fluorinated plasma on aluminum surfaces. The aluminum surfaces with/out a corrosion protective 

coating of nitrilotris(methylene)triphosphonic acid were used for this study. The techniques 
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confirmed significant damage to the corrosion protective coating and formation of aluminum 

oxyfluoride within the first few seconds of the plasma treatment. It was discovered that corrosion 

prone aluminum oxyfluoride could be easily converted back to aluminum oxide by heating in the 

presence of air. In a separate effort, metal-assisted secondary ion mass spectrometry (MetA-SIMS) 

was performed for the first time using thin layers of bismuth metal on 

poly(diallyldimethylammonium) chloride coated silicon dioxide surfaces. An enhancement by a 

factor of 10-1600 was observed in positive ion mode SIMS signal intensities. There was no need 

for charge compensation on Bi coated surfaces. Interference enhanced spectroscopic ellipsometry 

was successfully incorporated for the first time to accurately measure the thickness of bismuth 

metal layers directly over the sample surface. I believe that my research findings are an important 

contribution to surface science.  

 

6.2. Future Recommendations 

 In the research work presented in this dissertation, multiple surface chemical reactions were 

employed. Among them self-assembled monolayers of thiols on gold, the layer-by-layer deposition 

of polyelectrolytes, and a reaction with Traut’s reagent demonstrated excellent consistency and 

reproducibility. On the other hand, executing thiol-ene chemistry was a challenging task. 

Although, a great deal of literature is available on thiol-ene chemistry that is performed in 

conventional organic chemistry laboratory, the claimed click nature and high yields of these 

reactions were not evident when performed on surfaces. These results raise the need for more in 

depth experimentation on this topic. It would be an informative study to determine the yield of the  

thiol-ene reaction of a 1,2-polybutadiene coated surface with a thiolated molecule vs. a thiol 

terminated surface reacted with 1,2-polybutadiene. The reaction yields could be studied under 
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irradiation by different wavelengths of light (254 nm, 365 nm, and 550 nm) for different durations 

of time. The hydrophobic coating discussed in Chapter 3 demonstrated interesting water droplet 

pinning and flow properties that could be controlled by the extent of thermal cross-linking. It would 

be interesting to further explore this avenue by conducting a more thorough experimentation to 

precisely control the flow of water on the surface of these thin films. This could have direct 

application in the field of microfluidics. In addition, introduction and experimentation with a 

roughness parameter is another logical direction to further modify the hydrophobic profile of the 

prepared coating. The optimization of the thiol-ene reaction to give high yields in combination 

with the introduction of roughness can lead to development of a super-hydrophobic surface with 

unique flow properties. 

 In consideration of the available literature on MetA-SIMS, I have reported some new, 

interesting, and to some extent contrasting results in Chapter 5 of my dissertation. These results 

are encouraging, but suggest that more detailed studies should be undertaken. The 10 – 20 nm 

thick bismuth layers deposited on bare and polymer coated silicon substrates should be analyzed 

by scanning electron microscopy and atomic force microscopy. The cross-section of bismuth 

layers should also be studied with focused ion beam and scanning electron microscopy. These 

results would shed some light on the porosity and growth profile of bismuth. In addition, the 

oxidation of the bismuth layer should be monitored with X-ray photoelectron spectroscopy. All of 

this information could then be applied together to improve the accuracy of ellipsometric modeling. 

It is expected that the bismuth layers used in this work were oxidized to a certain extent as they 

were exposed to the atmosphere. In addition to quantifying the extent of bismuth oxidation by 

XPS, it would be useful to find out if this oxidation plays any role in the observed MetA-SIMS 

signal enhancement. The introduction of oxygen due to oxidation of bismuth could also improve 
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the secondary ion yield in negative ion mode ToF-SIMS spectra. To understand these possibilities, 

a comparative MetA-SIMS study should be performed with metallic and oxidized bismuth layers. 

In addition, a similar MetA-SIMS study could also be performed with other metals, e.g., Au, Ag, 

and Pt. These finding would be very helpful to further understand the mechanism of signal 

enhancement in MetA-SIMS.   
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Appendix A: Regression of Experimental Electron Binding Energies with 

Matrix Algebra. Semiempirical Predictions of Bohr’s 

Theory to Multielectron Atoms 

Note: The work presented in this appendix will be submitted to an educational journal in future. 

 

A.1. Abstract 

 Bohr’s atomic theory in 1913 gave a new dimension to our understanding of atomic 

structure. In particular, he predicted a Z2/n2 dependence to electron binding energies, where Z is 

the atomic number of the atom and n is the principal quantum number of the electron in question. 

Here I investigate, in a semiempirical sense, the Z2 dependence of the electron binding energies in 

multielectron atoms. I fit experimental binding energies to three models: the Bohr equation, AZ2, 

and AZ2 + BZ + C. I introduce a matrix algebra formalism for performing the regressions. Because 

of its simplicity and usefulness in other fitting problems, I have found that an understanding of this 

matrix algebra tool is valuable for advanced undergraduate and graduate students in chemistry. 

The application of matrix algebra to this particular problem also strengthens students’ 

understanding of Bohr Theory. 

 

A.2. Introduction 

 In 1913,1 Niels Bohr proposed “the first really successful theory of atomic structure”.2 This 

new model overcame the shortcomings of the models of his day, which included, among quite a 

few others, Thomson’s plum pudding model, Nagaoka’s saturnian model, and Rutherford’s 

nuclear atom.2 Based on the assumption of the quantization of electron orbital angular momentum, 
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his model accurately predicts the electron binding energies of one-electron atoms, e.g., H, He+, 

Li2+, etc., as: 

(1) En = -13.6 Z2/n2 eV 

 Where Z is the atomic number of the atom and n is the principal quantum number of the 

electron. As noted, Bohr’s model was a huge step forward in our understanding of the atom. 

Indeed, in their discussion of his contribution in their classic book on quantum mechanics, Pauling 

and Wilson wrote: “The successful effort of Bohr in 1913, despite its simplicity, may well be 

considered the greatest single step in the development of the theory of atomic structure.”3 Bohr 

received the Nobel Prize in 1922 for his monumental contribution.  

 While the Bohr model was a great step forward, it has its shortcomings, not the least of 

which is that it breaks down for atoms that contain more than one electron. It has, therefore, been 

supplanted by the more complete theory of quantum mechanics. Nevertheless, Bohr theory 

remains valuable for a variety of reasons. It serves as an important pedagogical tool at many levels 

of chemistry and physics, especially general chemistry, helping students understand fundamental 

concepts, such as the existence of quantized energy levels in atoms and the electronic transitions 

between them. Bohr theory also allows more advanced students of science and engineering to 

calculate, in a rather straightforward way, properties of atoms and materials that often prove to be 

fairly reasonable estimates for their actual behavior.4 Finally, as noted, it is of historical 

importance. 

 In this contribution I examine one of the predictions of Bohr theory, which is the Z2 

dependence of the binding energies of electrons in atoms. I explore this prediction, in a 

semiempirical way, for atoms with multiple electrons. In particular, I fit the binding energies of 

core electrons from a series of atoms and for two different values of ‘n’ using Bohr’s theory, and 
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to AZ2 and AZ2 + BZ + C, where I use matrix algebra to perform these regressions. I have found 

that this matrix algebra approach is powerful for students to understand because it applies generally 

to many other data fitting problems. The exercise of comparing the binding energies of atoms to 

the predictions of Bohr’s theory and fitting them to Z2-type polynomials will also strengthen 

students’ understanding of Bohr theory. 

 Some matrix algebra will be introduced in the examples below. It is believed that most 

advanced undergraduates in chemistry will have had enough matrix algebra to follow them. If, 

however, the reader is unable to follow what is presented here, he/she may wish to consult a 

textbook on linear algebra. 

 Finally, this document is deliberately written in a conversational way in the hope that it 

will be readable/accessible to undergraduate and graduate students interested in this topic. 

 

A.3. Solving a Simple Problem with Matrix Algebra 

I’ll first demonstrate the use of matrix algebra to find the intercept of the following two 

lines: 

 

(2) y = x + 1 

 

(3) y = -x + 1 

 

Clearly, I am looking for the values of x and y at their crossing point. I begin by rewriting Equations 

2 and 3 as: 
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(4) x – y = -1 

 

(5) x + y = 1 

 

I then reformulate Equations 4 and 5 as a single matrix algebra problem: 

 

(6) �1 −1
1 1 � �

𝑥𝑥
𝑦𝑦� = �−1

1 � 

 

where the coefficients of x and y in Equations 4 and 5 have been represented as the matrix: 

 

(7) �1 −1
1 1 � 

 

One method of solving Equation 6 for x and y is to left multiply both sides of it by the inverse of 

the matrix in Equation 7. I won’t worry here about how to find this inverse. There are mathematical 

methods to find it by hand, and of course there are programs like Excel, Matlab, and Mathematica 

that will, in general, determine it much more quickly. Thus, using one of these tools I find the 

inverse of Equation 7 to be: 

 

(8)  � 0.5 0.5
−0.5 0.5� 

 

Left multiplying both sides of Equation 6 by this matrix gives: 

 

172 
 



www.manaraa.com

(9) � 0.5 0.5
−0.5 0.5� �

1 −1
1 1 � �

𝑥𝑥
𝑦𝑦� = � 0.5 0.5

−0.5 0.5� �
−1
1 � 

 

which upon simplification leaves me with the identity matrix on the left: 

 

(10) �1 0
0 1� �

𝑥𝑥
𝑦𝑦� = �0

1� 

 

which of course reduces to: 

 

(11) �
𝑥𝑥
𝑦𝑦� = �0

1� 

 

Equation 11 tells me that x = 0 and y = 1, which satisfy Equations 2 and 3, i.e., you may wish to 

plug these values into these equations to convince yourself that this is the case. 

 

A.4. Fitting a Series of Data Points to a Straight Line using Matrix Algebra 

 Let’s now solve the more complicated, and interesting, problem of fitting a set of points to 

a straight line. Let’s take the points: (0, 0.1), (0.9, 1.1), (2.2, 1.9), (3.0, 2.7), and (4.1, 4.2). They’re 

plotted in Figure A.1. Now, it turns out that I can model this problem as follows: 

 

(12) yi = mxi + b 

where each xi and yi in Equation 12 are a pair of the (x, y) points above, and m and b are the slope 

and intercept of the line that best fits these points. Thus, I can write: 

(13) 0.1 = m*0 + b 

173 
 



www.manaraa.com

 

Figure A.1. Graph of the points: (0, 0.1), (0.9, 1.1), (2.2, 1.9), (3.0, 2.7), and (4.1, 4.2), and the 

linear fit to them. 
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(14) 1.1 = m*0.9 + b 

 

(15) 1.9 = m*2.2 + b 

 

(16) 2.7 = m*3.0 + b 

 

(17) 4.2 = m*4.1 + b 

 

I now rewrite all five of these equations as a single matrix algebra problem: 

 

(18) 

⎝

⎜
⎛

0.1
1.1
1.9
2.7
4.2⎠

⎟
⎞

=

⎝

⎜
⎛

0 1
0.9 1
2.2 1
3.0 1
4.1 1⎠

⎟
⎞
�𝑚𝑚𝑏𝑏 � 

 

Ideally, to solve this problem I would do what I did before. I would find the inverse of the 5 x 2 

matrix on the right side of Equation 18 and left multiply both sides of Equation 18 by this matrix. 

But there’s a significant problem here. Only square matrices have inverses. But, there is a simple 

solution to this problem. First, let me rewrite Equation 18 in an abbreviated fashion as follows: 

 

(19) Y = XM 

 

where Y, X, and M represent the 5 x 1, 5 x 2, and 2 x 1 matrices in Equation 18, respectively.  
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Now as it is known that any time two matrices are multiplied together, the number of 

columns in the matrix on the left must be equal to the number of rows in the matrix on the right. 

This was the case in Equation 6 – I multiplied a 2 x 2 matrix by a 2 x 1 matrix. There are two 

columns in the first matrix and two rows in the second one. Notice that when I multiplied these 

two matrices together we got a 2 x 1 matrix. That is, the second ‘2’ in the first set of dimensions 

and the first ‘2’ in the second set of dimensions needed to be the same, and then ‘disappeared’ to 

leave the outer numbers: 2 x 1. The same thing happens on the left of Equation 18. Here I am 

multiplying a 5 x 2 matrix by a 2 x 1 matrix. Again we see that the ‘2’s ‘disappear’ leaving us with 

a 5 x 1 matrix. That is, to multiply an i x j matrix by an m x n matrix, j must equal m, and if this is 

the case you end up with an i x n matrix. 

 Next I recall what the transpose of a matrix is. Essentially, in this operation, the rows of a 

matrix become its columns, and vice versa. That is, the transpose of the following 5 x 2 matrix: 

 

(20) 

⎝

⎜
⎛

0 1
0.9 1
2.2 1
3.0 1
4.1 1⎠

⎟
⎞

 

 

is following 2 x 5 matrix: 

 

(21) �0
1

   0.9
   1

   2.2
   1

   3.0
   1

   4.1
   1 � 

 

So I can see from this example that if we transpose an i x j matrix we get a j x i matrix. 
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 Now we use the following elegant trick. We will left multiply both sides of Equation 19 by 

the transpose of matrix X: XT: 

 

(22) XTY = XTXM 

 

and notice in this process that the product of XT with X will be a square matrix (a square matrix 

always has equal number of columns and rows). And while it is true that not all square matrices 

have inverses, only square matrices have inverses, so this trick provides me with a way of moving 

forward. Accordingly, the inverse of XTX, assuming it exists, will be represented as (XTX)-1. Thus, 

I left multiply both sides of Equation 22 by this matrix to get:  

 

(23) (XTX)-1XTY = (XTX)-1XTXM 

 

which, again assuming (XTX) has an inverse, reduces to the solution of Equation 19: 

 

(24) (XTX)-1XTY = M 

  

 So plugging the matrices in Equation 18 into Equation 24 and running the appropriate 

operations on them gives: m = 0.9472 and b = 0.0676. If you are not familiar with this mathematics 

it would probably be a good idea for you to solve this problem. This fit line (y = mx + b) is shown 

in Figure A.1. It is significant that it is the same I would have obtained using the standard least 

squares procedure taught in analytical chemistry courses. 
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A.5. Extending this Procedure to a Polynomial 

So far I have only considered linear systems. Now, what if I wished to fit a set of data points 

to a polynomial, e.g., y = ax2 + bx + c. How could I do this? I’d basically use the same procedure 

I just discussed. For the points (x1, y1), (x2, y2), etc., I would first write: 

 

(25) y1 = ax1
2 + bx1 + c 

 

(26)  y2 = ax2
2 + bx1 + c 

 

etc. 

 

I would then reformulate these equations into a matrix algebra problem as I did before: 

 

(27)  �
𝑦𝑦1
𝑦𝑦1
…
� = �

𝑥𝑥12 𝑥𝑥1 1
𝑥𝑥22 𝑥𝑥2 1
… … …

��
𝑎𝑎
𝑏𝑏
𝑐𝑐
� 

 

If I have more than three data points to fit, the matrix on the right side of Equation 27 will not be 

square. However, following the procedure used in the previous section, I can still manipulate 

Equation 27 so that I end up with an Equation like Equation 24 that will give us the values of a, b, 

and c. Obviously these principles also apply to fitting with higher order polynomials as well as to 

fitting to equations with fewer parameters. That is, if I had desired to fit our data to y = ax2, I would 

have reformulated the problem as: 
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(28) y1 = ax1
2 

 

(29)  y2 = ax2
2 

 

etc. to obtain: 

 

(30)  �
𝑦𝑦1
𝑦𝑦1
…
� = �

𝑥𝑥12

𝑥𝑥22
…
� (𝑎𝑎) 

 

For n pairs of x,y values, I would then have an n x 1 matrix on the right side of Equation 30. I 

could still follow the general approach outlined herein and multiply it by its transpose: a 1 x n 

matrix, which will allow us to find the parameter a. 

 

A.6. Comparing/Fitting the 1s Binding Energies of the Elements to Bohr’s 

Theory, AZ2, and AZ2 + BZ + C 

Figure A.2 contains a plot of the binding energies (circles) of the 1s electrons of the Z = 1 

– 92 elements, as obtained from the literature.5-8 As expected, these binding energies increase 

monotonically with increasing nuclear charge, i.e., it becomes progressively harder to remove an 

electron from an atom with more and more protons. Here I compare these experimental binding 

energies to (i) the values predicted by Bohr’s theory (Equation 1 with n = 1), (ii) a semiempirical 

fit with one adjustable parameter: AZ2, and (iii) a semiempirical fit with three adjustable  
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Figure A.2. Binding energies of the 1s electrons in the elements with Z = 1 to 92. The black dotted 

line represents the -13.6Z2/n2 (n = 1 for the 1s electrons) predictions from Bohr’s theory. The 

dashed line represents a one-parameter Z2 model, and the solid red line represents a three-

parameter Z2 model. 
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parameters: AZ2 + BZ + C. A few things are obvious here. First, Bohr theory does not explain the 

data. It isn’t supposed to. Second, however, the Bohr fit is ‘in the ballpark’. It fits the data 

reasonably well at lower and higher Z values, and moderately in between. The semiempirical AZ2 

and AZ2 + BZ + C fits then seems to be an improvement over the Bohr results, and, as expected, 

the equation with the largest number of adjustable parameters appears to give the best fit.  

 Figure A.3 shows the 2p1/2 binding energies of the elements5-8 from Z = 10 - 92 and three 

fits to this data: the Bohr equation (for n = 2), AZ2, and AZ2 + BZ + C. In this case, Bohr’s theory 

does a very poor job of estimating the experimental results, significantly overestimating them. Part 

of the reason for this overestimation is no doubt the fact that Bohr theory does not take into account 

the screening of the nucleus by inner shell electrons, i.e., the 1s electrons here. The AZ2 equation 

then does a moderately good job of fitting the experimental results, and the three parameter AZ2 + 

BZ + C equation fits the data reasonably well. While it is clear that Bohr theory no longer provides 

a good estimate of the experimental values, the fact that the three-parameter semiempirical 

equation fits the data as well as it does points again to a general Z2 dependence of the electron 

binding energies, which can be viewed as being generally consistent with Bohr’s theory. 
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Figure A.3. Binding energies (open circles) of the 2p1/2 electrons in the elements with Z = 10 to 

92. The dotted line represents the -13.6Z2/n2 (n = 2 for the 2p1/2 electrons) predictions from Bohr’s 

theory. The dashed line represents a one-parameter Z2 model, and the solid red line represents a 

three-parameter Z2 model. 
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Appendix B: Abbreviations 

 

Abbreviation Definition 

AFM Atomic force microscopy 

APTES (3-aminopopyl)triethoxysilane 

Au(111) Gold surface prepared by depositing 10-20 nm of chromium 
followed by 200 nm of gold on a piece of silicon wafer. 

Au-S Gold-sulfur 

Bi Bismuth metal 

BPT 1,1’-biphenyl-4-thiol  

CVD Chemical vapor deposition 

DNA Deoxyribonucleic acid 

DNA-SH Thiolated DNA 

DNA-S-S-DNA Thiolated DNA molecules that have formed disulfide linkages. 

DTT Dithiothreitol 

EtOH Ethanol 

HDT 1,6-hexanedithiol 

HDT/Au Gold surface functionalized with HDT SAM.  

ITO Indium tin oxide 

LBL Layer-by-layer 

MetA-SIMS Metal assisted secondary ion mass spectrometry 

MPTMS 3-mercaptopropyltrimethoxysilane  

MPTMS/SiO2/Si Silicon wafer functionalized with MPTMS 

NBPT 4’-nitro-1,1’-biphenyl-4-thiol  

NP Nitrilotris(methylene)triphosphonic acid 

ODT Octadecanethiol 

ODT/Au Gold surface functionalized with ODT SAM. 
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P/N Phosphorus/Nitrogen 

PAA Polyacrylic acid 

PAH Polyallylamine hydrochloride 

PAH/PAA LBL assembly of alternating layers of PAH and PAA. 

(PAH/PAA)nPAH PAH-terminated PAH/PAA assemblies. 

PBd 1,2-polybutadiene 

PBd/HDT/Au HDT/Au surface functionalized with PBd. 

PBd/MPTMS/SiO2/Si MPTMS/SiO2/Si surface reacted with PBd. 

PCA Principal component analysis 

PDADMAC Polydiallyldimethylammonium chloride 

PDDT 1H,1H,2H,2H-perfluorododecanethiol 

PDDT/PBd/HDT/Au PBd/HDT/Au surface functionalized with PDDT 

PDT 1H,1H,2H,2H-perfluorodecanethiol 

PDT/Au Gold surface functionalized with PDT SAM.  

PDT/PBd/HDT/Au PBd/HDT/Au surface functionalized with PDT 

PEG polyethylene glycol 

PFO Perfluorooctane 

PI  Primary ion 

PID Proportional-integral-derivative 

QCM Quartz crystal microbalance 

RSD Relative standard deviation 

-S-  Thiolate 

SAM Self-assembled monolayer 

SAMs Self-assembled monolayers 

SE Spectroscopic ellipsometry 

Si/SiO2 Silicon wafer 

SiO2/Si Silicon Wafer 
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TCEP tris(2-carboxyethyl)phosphine  

TEA Triethanolamine hydrochloride 

THF Tetrahydrofuran 

ToF-SIMS Time-of-flight secondary ion mass spectrometry 

TPDMT [1,1’;4’,1”-terphenyl]-4,4’’-dimethanethiol 

UV Ultraviolet 

XPS X-ray photoelectron spectroscopy 
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